Search results
Results from the WOW.Com Content Network
There are a number of effects which control spectral line shape. A spectral line extends over a tiny spectral band with a nonzero range of frequencies, not a single frequency (i.e., a nonzero spectral width). In addition, its center may be shifted from its nominal central wavelength. There are several reasons for this broadening and shift.
There is disagreement in the literature for some line designations; for example, the Fraunhofer d line may refer to the cyan iron line at 466.814 nm, or alternatively to the yellow helium line (also labeled D 3) at 587.5618 nm. Similarly, there is ambiguity regarding the e line, since it can refer to the spectral lines of both iron (Fe) and ...
There are emission lines from hydrogen that fall outside of these series, such as the 21 cm line. These emission lines correspond to much rarer atomic events such as hyperfine transitions. [1] The fine structure also results in single spectral lines appearing as two or more closely grouped thinner lines, due to relativistic corrections. [2]
In some cases spectral lines are well separated and distinguishable, but spectral lines can also overlap and appear to be a single transition if the density of energy states is high enough. Named series of lines include the principal , sharp , diffuse and fundamental series .
The strengths of the different spectral lines vary mainly due to the temperature of the photosphere, although in some cases there are true abundance differences. The spectral class of a star is a short code primarily summarizing the ionization state, giving an objective measure of the photosphere's temperature.
In the spectra of most spiral and irregular galaxies, active galactic nuclei, H II regions and planetary nebulae, the Balmer lines are emission lines. In stellar spectra, the H-epsilon line (transition 7→2, 397.007 nm) is often mixed in with another absorption line caused by ionized calcium known as "H" (the original designation given by ...
Therefore, the lines seen in the image above are the wavelengths corresponding to n = 2 on the right, to n → ∞ on the left. There are infinitely many spectral lines, but they become very dense as they approach n → ∞ (the Lyman limit), so only some of the first lines and the last one appear.
Although the emission lines are caused by a transition between quantized energy states and may at first look very sharp, they do have a finite width, i.e. they are composed of more than one wavelength of light. This spectral line broadening has many different causes.