Search results
Results from the WOW.Com Content Network
is the hoop stress. The hoop stress equation for thin shells is also approximately valid for spherical vessels, including plant cells and bacteria in which the internal turgor pressure may reach several atmospheres. In practical engineering applications for cylinders (pipes and tubes), hoop stress is often re-arranged for pressure, and is ...
Pipes and pressure vessels subject to external overpressure, caused for example by steam cooling within the pipe and condensing into water with subsequent massive pressure drop, risk buckling due to compressive hoop stresses. Design rules for calculation of the required wall thickness or reinforcement rings are given in various piping and ...
For cylindrical pressure vessels, the normal loads on a wall element are longitudinal stress, circumferential (hoop) stress and radial stress. The radial stress for a thick-walled cylinder is equal and opposite to the gauge pressure on the inside surface, and zero on the outside surface. The circumferential stress and longitudinal stresses are ...
After the stress distribution within the object has been determined with respect to a coordinate system (,), it may be necessary to calculate the components of the stress tensor at a particular material point with respect to a rotated coordinate system (′, ′), i.e., the stresses acting on a plane with a different orientation passing through ...
is the cylinder stress or "hoop stress". For the thin-walled assumption to be valid the vessel must have a wall thickness of no more than about one-tenth (often cited as one twentieth) of its radius. The cylinder stress , in turn, is the average force exerted circumferentially (perpendicular both to the axis and to the radius of the object) in ...
where is hoop stress, or stress in the circumferential direction, is stress in the longitudinal direction, p is internal gauge pressure, r is the inner radius of the sphere, and t is thickness of the sphere wall. A vessel can be considered "thin-walled" if the diameter is at least 10 times (sometimes cited as 20 times) greater than the wall ...
Barlow's formula (called "Kesselformel" [1] in German) relates the internal pressure that a pipe [2] can withstand to its dimensions and the strength of its material.. This approximate formula is named after Peter Barlow, an English mathematician.
Since many long distance transmission pipelines are designed to have a steel hoop stress of 80% of specified minimum yield strength (SMYS) at Maximum allowable operating pressure MAOP, this means that the steel is stressed to SMYS and above during the testing, and test sections must be selected to ensure that excessive plastic deformation does ...