Search results
Results from the WOW.Com Content Network
The reduction of nitro compounds are chemical reactions of wide interest in organic chemistry. The conversion can be effected by many reagents. The nitro group was one of the first functional groups to be reduced. Alkyl and aryl nitro compounds behave differently. Most useful is the reduction of aryl nitro compounds.
The Béchamp reduction (or Béchamp process) is a chemical reaction that converts aromatic nitro compounds to their corresponding anilines using iron as the reductant: [1] 4 C 6 H 5 NO 2 + 9 Fe + 4 H 2 O → 4 C 6 H 5 NH 2 + 3 Fe 3 O 4. This reaction was once a major route to aniline, but catalytic hydrogenation is the preferred method. [2]
Zinin reaction or Zinin reduction involves reduction of nitro aromatic compounds to the amines using sodium sulfide. [1] It is used to convert nitrobenzenes to anilines. [2] [3] The reaction selectively reduces nitro groups in the presence of other easily reduced functional groups (e.g., aryl halides and C=C bonds) are present in the molecule.
Aromatic carbonyls give red precipitates whereas aliphatic carbonyls give more yellow color. [2] The reaction between DNPH and a generic ketone to form a hydrazone is shown below: RR'C=O + C 6 H 3 (NO 2) 2 NHNH 2 → C 6 H 3 (NO 2) 2 NHN=CRR' + H 2 O. This reaction is, overall, a condensation reaction as two molecules joining together with loss ...
The structure of an organic nitro compound. In organic chemistry, nitro compounds are organic compounds that contain one or more nitro functional groups (−NO 2). The nitro group is one of the most common explosophores (functional group that makes a compound explosive) used globally. The nitro group is also strongly electron-withdrawing.
Nitroso compounds can be prepared by the reduction of nitro compounds [1] or by the oxidation of hydroxylamines. [2] Ortho-nitrosophenols may be produced by the Baudisch reaction . In the Fischer–Hepp rearrangement , aromatic 4-nitrosoanilines are prepared from the corresponding nitrosamines .
Aromatic monosubstituted and asymmetrically disubstituted hydrazines are poorly soluble in water, less basic and weaker reducing agents. For the preparation of aliphatic hydrazines, the reaction of hydrazine with alkylating compounds such as alkyl halides is used, or by reduction of nitroso derivatives.
The figure below illustrates one of the commonly accepted models for stereoselection without any modification to the Henry reaction. In this model, stereoselectivity is governed by the size of the R groups in the model (such as a carbon chain), as well as by a transition state that minimizes dipole by orienting the nitro group and carbonyl oxygen anti each other (on opposite sides of the ...