Search results
Results from the WOW.Com Content Network
As with other spreadsheets, Microsoft Excel works only to limited accuracy because it retains only a certain number of figures to describe numbers (it has limited precision). With some exceptions regarding erroneous values, infinities, and denormalized numbers, Excel calculates in double-precision floating-point format from the IEEE 754 ...
Provided the data are strictly positive, a better measure of relative accuracy can be obtained based on the log of the accuracy ratio: log(F t / A t) This measure is easier to analyze statistically and has valuable symmetry and unbiasedness properties
Data reconciliation is a technique that targets at correcting measurement errors that are due to measurement noise, i.e. random errors.From a statistical point of view the main assumption is that no systematic errors exist in the set of measurements, since they may bias the reconciliation results and reduce the robustness of the reconciliation.
This little-known but serious issue can be overcome by using an accuracy measure based on the logarithm of the accuracy ratio (the ratio of the predicted to actual value), given by (). This approach leads to superior statistical properties and also leads to predictions which can be interpreted in terms of the geometric mean.
The hypothesis to be tested is if D is within the acceptable range of accuracy. Let L = the lower limit for accuracy and U = upper limit for accuracy. Then H 0 L ≤ D ≤ U. versus H 1 D < L or D > U. is to be tested. The operating characteristic (OC) curve is the probability that the null hypothesis is accepted when it is true.
The final digit of a Universal Product Code, International Article Number, Global Location Number or Global Trade Item Number is a check digit computed as follows: [3] [4]. Add the digits in the odd-numbered positions from the left (first, third, fifth, etc.—not including the check digit) together and multiply by three.
A training data set is a data set of examples used during the learning process and is used to fit the parameters (e.g., weights) of, for example, a classifier. [9] [10]For classification tasks, a supervised learning algorithm looks at the training data set to determine, or learn, the optimal combinations of variables that will generate a good predictive model. [11]
Data validation is intended to provide certain well-defined guarantees for fitness and consistency of data in an application or automated system. Data validation rules can be defined and designed using various methodologies, and be deployed in various contexts. [1]