Search results
Results from the WOW.Com Content Network
In computer science, the analysis of algorithms is the process of finding the computational complexity of algorithms—the amount of time, storage, or other resources needed to execute them. Usually, this involves determining a function that relates the size of an algorithm's input to the number of steps it takes (its time complexity ) or the ...
In computer science, empirical algorithmics (or experimental algorithmics) is the practice of using empirical methods to study the behavior of algorithms.The practice combines algorithm development and experimentation: algorithms are not just designed, but also implemented and tested in a variety of situations.
Closely related fields in theoretical computer science are analysis of algorithms and computability theory. A key distinction between analysis of algorithms and computational complexity theory is that the former is devoted to analyzing the amount of resources needed by a particular algorithm to solve a problem, whereas the latter asks a more ...
The study of the complexity of explicitly given algorithms is called analysis of algorithms, while the study of the complexity of problems is called computational complexity theory. Both areas are highly related, as the complexity of an algorithm is always an upper bound on the complexity of the problem solved by this algorithm. Moreover, for ...
The theory of computation can be considered the creation of models of all kinds in the field of computer science. Therefore, mathematics and logic are used. In the last century, it separated from mathematics and became an independent academic discipline with its own conferences such as FOCS in 1960 and STOC in 1969, and its own awards such as the IMU Abacus Medal (established in 1981 as the ...
Probabilistic algorithms can also be used for filtering, prediction, smoothing, and finding explanations for streams of data, thus helping perception systems analyze processes that occur over time (e.g., hidden Markov models or Kalman filters).
“If it seems like AI is everywhere, it’s partly because ‘artificial intelligence’ means lots of things, depending on whether you’re reading science fiction or selling a new app or doing ...
The order of growth (e.g. linear, logarithmic) of the worst-case complexity is commonly used to compare the efficiency of two algorithms. The worst-case complexity of an algorithm should be contrasted with its average-case complexity, which is an average measure of the amount of resources the algorithm uses on a random input.