Search results
Results from the WOW.Com Content Network
Eugen Goldstein (/ ˈ ɔɪ ɡ ən / OY-gən, German: [ˈɔʏɡeːn ˈɡɔlt.ʃtaɪn, ˈɔʏɡn̩-]; 5 September 1850 – 25 December 1930) was a German physicist.He was an early investigator of discharge tubes, the discoverer of anode rays or canal rays, later identified as positive ions in the gas phase including the hydrogen ion.
They were first observed in Crookes tubes during experiments by the German scientist Eugen Goldstein, in 1886. [1] Later work on anode rays by Wilhelm Wien and J. J. Thomson led to the development of mass spectrometry.
Crookes X-ray tube from around 1910 Another Crookes x-ray tube. The device attached to the neck of the tube (right) is an "osmotic softener". When the voltage applied to a Crookes tube is high enough, around 5,000 volts or greater, [16] it can accelerate the electrons to a high enough velocity to create X-rays when they hit the anode or the glass wall of the tube.
They were first observed in 1859 by German physicist Julius Plücker and Johann Wilhelm Hittorf, [1] and were named in 1876 by Eugen Goldstein Kathodenstrahlen, or cathode rays. [2] [3] In 1897, British physicist J. J. Thomson showed that cathode rays were composed of a previously unknown negatively charged particle, which was later named the ...
1886: Discovery of anode rays by Eugen Goldstein [445] 1887: Discoveries of electromagnetic radiation, photoelectric effect and radio waves by Heinrich Hertz [446] 1887: First parabolic antenna by Heinrich Hertz [447] 1893–1896: Wien approximation (1896) [448] and Wien's displacement law (1893) [449] by Wilhelm Wien
Hittorf inferred that there are straight rays emitted from the cathode and that the phosphorescence was caused by the rays striking the tube walls. In 1876 Eugen Goldstein showed that the rays were emitted perpendicular to the cathode surface, which differentiated them from the incandescent light. Eugen Goldstein dubbed them cathode rays.
Eugen Goldstein observes canal rays. 1898 Wilhelm Wien Wilhelm Wien demonstrates that canal rays can be deflected using strong electric and magnetic fields. He shows that the mass-to-charge ratio of the particles have opposite polarity and is much larger compared to the electron. He also realizes that the particle mass is similar to the one of ...
Rutherford determined that the only place this hydrogen could have come from was the nitrogen, and therefore nitrogen must contain hydrogen nuclei. He thus suggested that the hydrogen nucleus, which was known to have an atomic number of 1, was an elementary particle, which he decided must be the protons hypothesized by Eugen Goldstein (1886). 1919