Search results
Results from the WOW.Com Content Network
Mulliken charges arise from the Mulliken population analysis [1] [2] and provide a means of estimating partial atomic charges from calculations carried out by the methods of computational chemistry, particularly those based on the linear combination of atomic orbitals molecular orbital method, and are routinely used as variables in linear regression (QSAR [3]) procedures. [4]
Ionic, or charged, structures for a given atom can be determined by assigning a charge to a molecule, and then following Rumer's method. For the case of butadiene, the 20 possible Rumer structures are shown, where 1 and 2 are the covalent structures, 3-14 are the monoionic structures, and 15-20 are the diionic structures.
Robert Mulliken was born in Newburyport, Massachusetts on June 7 1896. His father, Samuel Parsons Mulliken, was a professor of organic chemistry at the Massachusetts Institute of Technology. As a child, Robert Mulliken learned the name and botanical classification of
Millikan in 1891. Robert Andrews Millikan was born on March 22, 1868, in Morrison, Illinois. [6] He went to high school in Maquoketa, Iowa and received a bachelor's degree in the classics from Oberlin College in 1891 and his doctorate in physics from Columbia University in 1895 [11] – he was the first to earn a Ph.D. from that department.
This connection comes from the Mulliken electronegativity scale. By inserting the energetic definitions of the ionization potential and electron affinity into the Mulliken electronegativity, it is seen that the Mulliken chemical potential is a finite difference approximation of the electronic energy with respect to the number of electrons, i.e.,
Mulliken population analysis is based on electron densities in molecules and is a way of dividing the density between atoms to give an estimate of atomic charges. In transmission electron microscopy (TEM) and deep inelastic scattering , as well as other high energy particle experiments, high energy electrons interacts with the electron cloud to ...
In atomic physics, a partial charge (or net atomic charge) is a non-integer charge value when measured in elementary charge units. It is represented by the Greek lowercase delta (𝛿), namely 𝛿− or 𝛿+. Partial charges are created due to the asymmetric distribution of electrons in chemical bonds.
In the late 1990s a second-order expansion of the Kohn-Sham energy enabled a charge self-consistent treatment of systems [2] where Mulliken charges of the atoms are solved self-consistently. This expansion has been continued to the 3rd order in charge fluctuations [3] and with respect to spin fluctuations. [4]