Search results
Results from the WOW.Com Content Network
Scientific visualization (also spelled scientific visualisation) is an interdisciplinary branch of science concerned with the visualization of scientific phenomena. [2] It is also considered a subset of computer graphics, a branch of computer science. The purpose of scientific visualization is to graphically illustrate scientific data to enable ...
The objects in 3D computer graphics are often referred to as 3D models. Unlike the rendered image, a model's data is contained within a graphical data file. A 3D model is a mathematical representation of any three-dimensional object; a model is not technically a graphic until it is displayed.
A 3D projection (or graphical projection) is a design technique used to display a three-dimensional (3D) object on a two-dimensional (2D) surface. These projections rely on visual perspective and aspect analysis to project a complex object for viewing capability on a simpler plane.
Graphic representation of a minute fraction of the WWW, demonstrating hyperlinks.. Graph drawing is an area of mathematics and computer science combining methods from geometric graph theory and information visualization to derive two-dimensional depictions of graphs arising from applications such as social network analysis, cartography, linguistics, and bioinformatics.
This is a list of graphical methods with a mathematical basis. Included are diagram techniques, chart techniques, plot techniques, and other forms of visualization . There is also a list of computer graphics and descriptive geometry topics .
Scientific modelling is an activity that produces models representing empirical objects, phenomena, and physical processes, to make a particular part or feature of the world easier to understand, define, quantify, visualize, or simulate. It requires selecting and identifying relevant aspects of a situation in the real world and then developing ...
Oblique projection is a simple type of technical drawing of graphical projection used for producing two-dimensional (2D) images of three-dimensional (3D) objects. The objects are not in perspective and so do not correspond to any view of an object that can be obtained in practice, but the technique yields somewhat convincing and useful results.
Linear or point-projection perspective works by putting an imaginary flat plane that is close to an object under observation and directly facing an observer's eyes (i.e., the observer is on a normal, or perpendicular line to the plane). Then draw straight lines from every point in the object to the observer.