Search results
Results from the WOW.Com Content Network
Disjunction introduction or addition (also called or introduction) [1] [2] [3] is a rule of inference of propositional logic and almost every other deduction system. The rule makes it possible to introduce disjunctions to logical proofs. It is the inference that if P is true, then P or Q must be true. An example in English: Socrates is a man.
Implication introduction / elimination (modus ponens) Biconditional introduction / elimination; Conjunction introduction / elimination; Disjunction introduction / elimination; Disjunctive / hypothetical syllogism; Constructive / destructive dilemma; Absorption / modus tollens / modus ponendo tollens; Negation introduction; Rules of replacement
De Morgan's laws represented with Venn diagrams.In each case, the resultant set is the set of all points in any shade of blue. In propositional logic and Boolean algebra, De Morgan's laws, [1] [2] [3] also known as De Morgan's theorem, [4] are a pair of transformation rules that are both valid rules of inference.
A theory of first-order logic is geometric if it is can be axiomatised using only axioms of the form ,,,, where I and J are disjoint collections of formulae indices that each may be infinite and the formulae φ are either atoms or negations of atoms.
Because this semantics allows a disjunctive formula to be true when both of its disjuncts are true, it is an inclusive interpretation of disjunction, in contrast with exclusive disjunction. Classical proof theoretical treatments are often given in terms of rules such as disjunction introduction and disjunction elimination.
Implication introduction / elimination (modus ponens) Biconditional introduction / elimination; Conjunction introduction / elimination; Disjunction introduction / elimination; Disjunctive / hypothetical syllogism; Constructive / destructive dilemma; Absorption / modus tollens / modus ponendo tollens; Negation introduction; Rules of replacement
The name "disjunctive syllogism" derives from its being a syllogism, a three-step argument, and the use of a logical disjunction (any "or" statement.) For example, "P or Q" is a disjunction, where P and Q are called the statement's disjuncts. The rule makes it possible to eliminate a disjunction from a logical proof. It is the rule that
Perceptrons: An Introduction to Computational Geometry is a book of thirteen chapters grouped into three sections. Chapters 1–10 present the authors' perceptron theory through proofs, Chapter 11 involves learning, Chapter 12 treats linear separation problems, and Chapter 13 discusses some of the authors' thoughts on simple and multilayer ...