Search results
Results from the WOW.Com Content Network
An SNP array is a useful tool for studying slight variations between whole genomes. The most important clinical applications of SNP arrays are for determining disease susceptibility [5] and for measuring the efficacy of drug therapies designed specifically for individuals. [6] In research, SNP arrays are most frequently used for genome-wide ...
SNP genotyping is the measurement of genetic variations of single nucleotide polymorphisms (SNPs) between members of a species. It is a form of genotyping, which is the measurement of more general genetic variation. SNPs are one of the most common types of genetic variation.
Memory-optimized Needleman-Wunsch dynamic programming: Both: Global: I. Longden (modified from G. Myers and W. Miller) 1999 tranalign Aligns nucleic acid sequences given a protein alignment: Nucleotide: NA: G. Williams (modified from B. Pearson) 2002 UGENE Opensource Smith-Waterman for SSE/CUDA, Suffix array based repeats finder & dotplot: Both ...
Identification of the captured SNPs was performed on genotyping arrays where each spot on the array contained sequences complementary to the locus-specific tags in the probes. Since the DNA array costs is a major contributor to the cost of this technique, the performance of four-chip-one-color detection was compared to two-chip-two
Data analysis for an array-based DNA copy number test can be very challenging though due to very high volume of data that come out of an array platform. BAC (Bacterial Artificial Chromosome) arrays were historically the first microarray platform to be used for DNA copy number analysis. This platform is used to identify gross deletions or ...
In genetics and bioinformatics, a single-nucleotide polymorphism (SNP / s n ɪ p /; plural SNPs / s n ɪ p s /) is a germline substitution of a single nucleotide at a specific position in the genome. Although certain definitions require the substitution to be present in a sufficiently large fraction of the population (e.g. 1% or more), [ 1 ...
SNPs are the most common genetic variant found in all individual with one SNP every 100–300 bp in some species. [4] Since there is a massive number of SNPs on the genome, there is a clear need to prioritize SNPs according to their potential effect in order to expedite genotyping and analysis. [5]
In genetics, imputation is the statistical inference of unobserved genotypes. [1] It is achieved by using known haplotypes in a population, for instance from the HapMap or the 1000 Genomes Project in humans, thereby allowing to test for association between a trait of interest (e.g. a disease) and experimentally untyped genetic variants, but whose genotypes have been statistically inferred ...