Search results
Results from the WOW.Com Content Network
This algorithm is sometimes also known as the crossing number algorithm or the even–odd rule algorithm, and was known as early as 1962. [3] The algorithm is based on a simple observation that if a point moves along a ray from infinity to the probe point and if it crosses the boundary of a polygon, possibly several times, then it alternately ...
A parity bit is a bit that is added to a group of source bits to ensure that the number of set bits (i.e., bits with value 1) in the outcome is even or odd. It is a very simple scheme that can be used to detect single or any other odd number (i.e., three, five, etc.) of errors in the output.
For instance, the UPC-A barcode for a box of tissues is "036000241457". The last digit is the check digit "7", and if the other numbers are correct then the check digit calculation must produce 7. Add the odd number digits: 0+6+0+2+1+5 = 14. Multiply the result by 3: 14 × 3 = 42. Add the even number digits: 3+0+0+4+4 = 11.
The SVG defines the even–odd rule by saying: This rule determines the "insideness" of a point on the canvas by drawing a ray from that point to infinity in any direction and counting the number of path segments from the given shape that the ray crosses. If this number is odd, the point is inside; if even, the point is outside.
The odd–even sort algorithm correctly sorts this data in passes. (A pass here is defined to be a full sequence of odd–even, or even–odd comparisons. The passes occur in order pass 1: odd–even, pass 2: even–odd, etc.) Proof: This proof is based loosely on one by Thomas Worsch. [6]
Accordingly, there are two variants of parity bits: even parity bit and odd parity bit. In the case of even parity, for a given set of bits, the bits whose value is 1 are counted. If that count is odd, the parity bit value is set to 1, making the total count of occurrences of 1s in the whole set (including the parity bit) an even number.
An algorithm is fundamentally a set of rules or defined procedures that is typically designed and used to solve a specific problem or a broad set of problems.. Broadly, algorithms define process(es), sets of rules, or methodologies that are to be followed in calculations, data processing, data mining, pattern recognition, automated reasoning or other problem-solving operations.
Since the claim depends on whether l is odd or even, we prove each case separately. If l is odd, then, by the induction hypothesis, for an array A of length l , permutations(l, A) will not change A, and for the claim to hold for arrays of length l +1 (which is even), we need to show that permutations(l+1, A) rotates A to the right by 1 position.