Search results
Results from the WOW.Com Content Network
The Ramberg–Osgood equation was created to describe the nonlinear relationship between stress and strain—that is, the stress–strain curve—in materials near their yield points. It is especially applicable to metals that harden with plastic deformation (see work hardening ), showing a smooth elastic-plastic transition.
Thus the basic influence parameters for the forming limits are, the strain hardening exponent, n, the initial sheet thickness, t 0 and the strain rate hardening coefficient, m. The lankford coefficient, r, which defines the plastic anisotropy of the material, has two effects on the forming limit curve. On the left side there is no influence ...
The strain hardening exponent (also called the strain hardening index), usually denoted , is a measured parameter that quantifies the ability of a material to become stronger due to strain hardening. Strain hardening (work hardening) is the process by which a material's load-bearing capacity increases during plastic (permanent) strain , or ...
This equation defines the yield surface as a circular cylinder (See Figure) whose yield curve, or intersection with the deviatoric plane, is a circle with radius , or . This implies that the yield condition is independent of hydrostatic stresses.
In those situations the plastic strain rate is calculated in the same manner as in rate-independent plasticity. In other situations, the yield stress model provides a direct means of computing the plastic strain rate. Numerous empirical and semi-empirical flow stress models are used the computational plasticity.
The exact equation to represent flow stress depends on the particular material and plasticity model being used. Hollomon's equation is commonly used to represent the behavior seen in a stress-strain plot during work hardening: [2] =
Plastic deformation of a thin metal sheet. Flow plasticity is a solid mechanics theory that is used to describe the plastic behavior of materials. [1] Flow plasticity theories are characterized by the assumption that a flow rule exists that can be used to determine the amount of plastic deformation in the material.
The quadratic Hill yield criterion [1] has the form : + + + + + = . Here F, G, H, L, M, N are constants that have to be determined experimentally and are the stresses. The quadratic Hill yield criterion depends only on the deviatoric stresses and is pressure independent.