Search results
Results from the WOW.Com Content Network
The change in pressure over distance dx is dp and flow velocity v = dx / dt . Apply Newton's second law of motion (force = mass × acceleration) and recognizing that the effective force on the parcel of fluid is −A dp. If the pressure decreases along the length of the pipe, dp is negative but the force resulting in flow is positive ...
is the partial derivative in the direction x of the flow velocity component v that is oriented along the direction y. We can now generalize to the case of an incompressible flow with a general direction in the 3D space, the above constitutive equation becomes τ i j = μ ( ∂ v i ∂ x j + ∂ v j ∂ x i ) {\displaystyle \tau _{ij}=\mu \left ...
There are two main descriptions of motion: dynamics and kinematics.Dynamics is general, since the momenta, forces and energy of the particles are taken into account. In this instance, sometimes the term dynamics refers to the differential equations that the system satisfies (e.g., Newton's second law or Euler–Lagrange equations), and sometimes to the solutions to those equations.
If correctly selected, it reaches terminal velocity, which can be measured by the time it takes to pass two marks on the tube. Electronic sensing can be used for opaque fluids. Knowing the terminal velocity, the size and density of the sphere, and the density of the liquid, Stokes' law can be used to calculate the viscosity of the fluid. A ...
The two blue vectors represent velocities after the collision and add vectorially to get the initial (red) velocity. Real motion has both direction and velocity and must be represented by a vector. In a coordinate system with x, y, z axes, velocity has components v x in the x-direction, v y in the y-direction, v z in the z-direction.
The vorticity equation of fluid dynamics describes the evolution of the vorticity ω of a particle of a fluid as it moves with its flow; that is, the local rotation of the fluid (in terms of vector calculus this is the curl of the flow velocity). The governing equation is:
The Navier–Stokes equations (/ n æ v ˈ j eɪ s t oʊ k s / nav-YAY STOHKS) are partial differential equations which describe the motion of viscous fluid substances. They were named after French engineer and physicist Claude-Louis Navier and the Irish physicist and mathematician George Gabriel Stokes.
For example, for a macroscopic scalar field φ(x, t) and a macroscopic vector field A(x, t) the definition becomes: +, +. In the scalar case ∇ φ is simply the gradient of a scalar, while ∇ A is the covariant derivative of the macroscopic vector (which can also be thought of as the Jacobian matrix of A as a function of x ).