Search results
Results from the WOW.Com Content Network
In computational geometry, the point-in-polygon (PIP) problem asks whether a given point in the plane lies inside, outside, or on the boundary of a polygon. It is a special case of point location problems and finds applications in areas that deal with processing geometrical data, such as computer graphics , computer vision , geographic ...
Matthias Kramm's gfxpoly, a free C library for 2D polygons (BSD license). Klaas Holwerda's Boolean, a C++ library for 2D polygons. David Kennison's Polypack, a FORTRAN library based on the Vatti algorithm. Klamer Schutte's Clippoly, a polygon clipper written in C++. Michael Leonov's poly_Boolean, a C++ library, which extends the Schutte algorithm.
JTS is developed under the Java JDK 1.4 platform. It is 100% pure Java. It will run on all more recent JDKs as well. [6] JTS has been ported to the .NET Framework as the Net Topology Suite. A JTS subset has been ported to C++, with entry points declared as C interfaces, as the GEOS library.
An important special case, in which the points are given in the order of traversal of a simple polygon's boundary, is described later in a separate subsection. If not all points are on the same line, then their convex hull is a convex polygon whose vertices are some of the points in the input set. Its most common representation is the list of ...
The point location problem is a fundamental topic of computational geometry. It finds applications in areas that deal with processing geometrical data: computer graphics , geographic information systems (GIS), motion planning , and computer aided design (CAD).
Hermes Project: C++/Python library for rapid prototyping of space- and space-time adaptive hp-FEM solvers. IML++ is a C++ library for solving linear systems of equations, capable of dealing with dense, sparse, and distributed matrices. IT++ is a C++ library for linear algebra (matrices and vectors), signal processing and communications ...
Subscript k takes integer values starting from 0, for the 1st point and increases by 1 until endpoint is reached. y value is rounded off to nearest integer to correspond to a screen pixel. For lines with slope greater than 1, we reverse the role of x and y i.e. we sample at dy=1 and calculate consecutive x values as
Cyrus–Beck is a general algorithm and can be used with a convex polygon clipping window, unlike Cohen-Sutherland, which can be used only on a rectangular clipping area. Here the parametric equation of a line in the view plane is p ( t ) = t p 1 + ( 1 − t ) p 0 {\displaystyle \mathbf {p} (t)=t\mathbf {p} _{1}+(1-t)\mathbf {p} _{0}} where 0 ...