Search results
Results from the WOW.Com Content Network
In calculus, integration by substitution, also known as u-substitution, reverse chain rule or change of variables, [1] is a method for evaluating integrals and antiderivatives. It is the counterpart to the chain rule for differentiation , and can loosely be thought of as using the chain rule "backwards."
Step i = 0 yields the original integral. For the complete result in step i > 0 the i th integral must be added to all the previous products (0 ≤ j < i) of the j th entry of column A and the (j + 1) st entry of column B (i.e., multiply the 1st entry of column A with the 2nd entry of column B, the 2nd entry of column A with the 3rd entry of ...
In mathematics, the definite integral ∫ a b f ( x ) d x {\displaystyle \int _{a}^{b}f(x)\,dx} is the area of the region in the xy -plane bounded by the graph of f , the x -axis, and the lines x = a and x = b , such that area above the x -axis adds to the total, and that below the x -axis subtracts from the total.
Integration is the basic operation in integral calculus.While differentiation has straightforward rules by which the derivative of a complicated function can be found by differentiating its simpler component functions, integration does not, so tables of known integrals are often useful.
The substitution is described in most integral calculus textbooks since the late 19th century, usually without any special name. [5] It is known in Russia as the universal trigonometric substitution , [ 6 ] and also known by variant names such as half-tangent substitution or half-angle substitution .
The integral symbol is U+222B ∫ INTEGRAL in Unicode [5] and \int in LaTeX. In HTML , it is written as ∫ ( hexadecimal ), ∫ ( decimal ) and ∫ ( named entity ). The original IBM PC code page 437 character set included a couple of characters ⌠,⎮ and ⌡ (codes 244 and 245 respectively) to build the integral symbol.
Schwinger parametrization is a technique for evaluating loop integrals which arise from Feynman diagrams with one or more loops. Using the well-known observation that 1 A n = 1 ( n − 1 ) ! ∫ 0 ∞ d u u n − 1 e − u A , {\displaystyle {\frac {1}{A^{n}}}={\frac {1}{(n-1)!}}\int _{0}^{\infty }du\,u^{n-1}e^{-uA},}
Duhamel's principle is the result that the solution to an inhomogeneous, linear, partial differential equation can be solved by first finding the solution for a step input, and then superposing using Duhamel's integral. Suppose we have a constant coefficient, m-th order inhomogeneous ordinary differential equation.