Search results
Results from the WOW.Com Content Network
A "parameter" is to a population as a "statistic" is to a sample; that is to say, a parameter describes the true value calculated from the full population (such as the population mean), whereas a statistic is an estimated measurement of the parameter based on a sample (such as the sample mean, which is the mean of gathered data per sampling ...
A statistic (singular) or sample statistic is any quantity computed from values in a sample which is considered for a statistical purpose. Statistical purposes include estimating a population parameter, describing a sample, or evaluating a hypothesis. The average (or mean) of sample values is a statistic. The term statistic is used both for the ...
Parametric statistics is a branch of statistics which leverages models based on a fixed (finite) set of parameters. [1] Conversely nonparametric statistics does not assume explicit (finite-parametric) mathematical forms for distributions when modeling data. However, it may make some assumptions about that distribution, such as continuity or ...
In statistics, identifiability is a property which a model must satisfy for precise inference to be possible. A model is identifiable if it is theoretically possible to learn the true values of this model's underlying parameters after obtaining an infinite number of observations from it.
In computer programming, two notions of parameter are commonly used, and are referred to as parameters and arguments—or more formally as a formal parameter and an actual parameter. For example, in the definition of a function such as y = f(x) = x + 2, x is the formal parameter (the parameter) of the defined function.
Two main statistical methods are used in data analysis: descriptive statistics, which summarize data from a sample using indexes such as the mean or standard deviation, and inferential statistics, which draw conclusions from data that are subject to random variation (e.g., observational errors, sampling variation). [4]
In probability theory and statistics, a scale parameter is a special kind of numerical parameter of a parametric family of probability distributions. The larger the scale parameter, the more spread out the distribution.
In statistics, a nuisance parameter is any parameter which is unspecified [1] but which must be accounted for in the hypothesis testing of the parameters which are of interest. The classic example of a nuisance parameter comes from the normal distribution , a member of the location–scale family .