Search results
Results from the WOW.Com Content Network
In physics, statistics, econometrics and signal processing, a stochastic process is said to be in an ergodic regime if an observable's ensemble average equals the time average. [1] In this regime, any collection of random samples from a process must represent the average statistical properties of the entire regime.
There are two types of active transport: primary active transport that uses adenosine triphosphate (ATP), and secondary active transport that uses an electrochemical gradient. This process is in contrast to passive transport , which allows molecules or ions to move down their concentration gradient, from an area of high concentration to an area ...
The mathematical definition of ergodicity aims to capture ordinary every-day ideas about randomness.This includes ideas about systems that move in such a way as to (eventually) fill up all of space, such as diffusion and Brownian motion, as well as common-sense notions of mixing, such as mixing paints, drinks, cooking ingredients, industrial process mixing, smoke in a smoke-filled room, the ...
Secondary active transport is when one solute moves down the electrochemical gradient to produce enough energy to force the transport of another solute from low concentration to high concentration. [ citation needed ] An example of where this occurs is in the movement of glucose within the proximal convoluted tubule (PCT).
Exocytosis (/ ˌ ɛ k s oʊ s aɪ ˈ t oʊ s ɪ s / [1] [2]) is a form of active transport and bulk transport in which a cell transports molecules (e.g., neurotransmitters and proteins) out of the cell (exo-+ cytosis). As an active transport mechanism, exocytosis requires the use of energy to transport material.
Active transport is the movement of a substance across a membrane against its concentration gradient. This is usually to accumulate high concentrations of molecules that a cell needs, such as glucose or amino acids. If the process uses chemical energy, such as adenosine triphosphate (ATP), it is called primary active transport.
In active transport a solute is moved against a concentration or electrochemical gradient; in doing so the transport proteins involved consume metabolic energy, usually ATP. In primary active transport the hydrolysis of the energy provider (e.g. ATP) takes place directly in order to transport the solute in question, for instance, when the ...
The mechanism of the flow between nodes is actively driven, as opposed to passive transport by diffusion. [4] Active transport requires energy consumption, found in the form of ATP in biological systems. The slime mold Physarum polycephalum is also growing as a network [5], where motion inside is driven an active flow.