enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Deformation (engineering) - Wikipedia

    en.wikipedia.org/wiki/Deformation_(engineering)

    An example of a material with a large plastic deformation range is wet chewing gum, which can be stretched to dozens of times its original length. Under tensile stress, plastic deformation is characterized by a strain hardening region and a necking region and finally, fracture (also called rupture).

  3. Plasticity (physics) - Wikipedia

    en.wikipedia.org/wiki/Plasticity_(physics)

    An idealized uniaxial stress-strain curve showing elastic and plastic deformation regimes for the deformation theory of plasticity There are several mathematical descriptions of plasticity. [ 12 ] One is deformation theory (see e.g. Hooke's law ) where the Cauchy stress tensor (of order d-1 in d dimensions) is a function of the strain tensor.

  4. Viscoplasticity - Wikipedia

    en.wikipedia.org/wiki/Viscoplasticity

    The yield function is often expressed as an equation consisting of some invariant of stress and a model for the yield stress (or plastic flow stress). An example is von Mises or plasticity. In those situations the plastic strain rate is calculated in the same manner as in rate-independent plasticity.

  5. Work hardening - Wikipedia

    en.wikipedia.org/wiki/Work_hardening

    The strain can be decomposed into a recoverable elastic strain (ε e) and an inelastic strain (ε p). The stress at initial yield is σ 0 . Work hardening , also known as strain hardening , is the process by which a material's load-bearing capacity (strength) increases during plastic (permanent) deformation.

  6. Portevin–Le Chatelier effect - Wikipedia

    en.wikipedia.org/wiki/Portevin–Le_Chatelier_effect

    The cyclic changes described above produce serrations in the plastic region of the stress strain diagram of a tensile test that is undergoing the Portevin-Le Chatelier effect. The variation in stress also causes non-homogeneous deformation to occur throughout the sample which can be visible to the naked eye through observation of a rough finish.

  7. Stress–strain analysis - Wikipedia

    en.wikipedia.org/wiki/Stress–strain_analysis

    Stress–strain analysis (or stress analysis) is an engineering discipline that uses many methods to determine the stresses and strains in materials and structures subjected to forces. In continuum mechanics , stress is a physical quantity that expresses the internal forces that neighboring particles of a continuous material exert on each other ...

  8. Indentation plastometry - Wikipedia

    en.wikipedia.org/wiki/Indentation_plastometry

    Indentation plastometry is the idea of using an indentation-based procedure to obtain (bulk) mechanical properties (of metals) in the form of stress-strain relationships in the plastic regime (as opposed to hardness testing, which gives numbers that are only semi-quantitative indicators of the resistance to plastic deformation).

  9. Shakedown (continuum mechanics) - Wikipedia

    en.wikipedia.org/wiki/Shakedown_(continuum...

    In continuum mechanics, elastic shakedown behavior is one in which plastic deformation takes place during running in, while due to residual stresses or strain hardening the steady state is perfectly elastic. Plastic shakedown behavior is one in which the steady state is a closed elastic-plastic loop, with no net accumulation of plastic deformation.