Search results
Results from the WOW.Com Content Network
An idealized uniaxial stress-strain curve showing elastic and plastic deformation regimes for the deformation theory of plasticity There are several mathematical descriptions of plasticity. [ 12 ] One is deformation theory (see e.g. Hooke's law ) where the Cauchy stress tensor (of order d-1 in d dimensions) is a function of the strain tensor.
The difference between the Cam Clay and the Modified Cam Clay [4] (MCC) is that the yield surface of the MCC is described by an ellipse and therefore the plastic strain increment vector (which is perpendicular to the yield surface) for the largest value of the mean effective stress is horizontal, and hence no incremental deviatoric plastic ...
The yield function is often expressed as an equation consisting of some invariant of stress and a model for the yield stress (or plastic flow stress). An example is von Mises or plasticity. In those situations the plastic strain rate is calculated in the same manner as in rate-independent plasticity.
The strain can be decomposed into a recoverable elastic strain (ε e) and an inelastic strain (ε p). The stress at initial yield is σ 0 . Work hardening , also known as strain hardening , is the process by which a material's load-bearing capacity (strength) increases during plastic (permanent) deformation.
Indentation plastometry is the idea of using an indentation-based procedure to obtain (bulk) mechanical properties (of metals) in the form of stress-strain relationships in the plastic regime (as opposed to hardness testing, which gives numbers that are only semi-quantitative indicators of the resistance to plastic deformation).
An example of a material with a large plastic deformation range is wet chewing gum, which can be stretched to dozens of times its original length. Under tensile stress, plastic deformation is characterized by a strain hardening region and a necking region and finally, fracture (also called rupture).
The Drucker–Prager yield criterion [1] is a pressure-dependent model for determining whether a material has failed or undergone plastic yielding. The criterion was introduced to deal with the plastic deformation of soils. It and its many variants have been applied to rock, concrete, polymers, foams, and other pressure-dependent materials.
The stress is proportional to the strain, that is, obeys the general Hooke's law, and the slope is Young's modulus. In this region, the material undergoes only elastic deformation. The end of the stage is the initiation point of plastic deformation. The stress component of this point is defined as yield strength (or upper yield point, UYP for ...