Search results
Results from the WOW.Com Content Network
In statistics, point estimation involves the use of sample data to calculate a single value (known as a point estimate since it identifies a point in some parameter space) which is to serve as a "best guess" or "best estimate" of an unknown population parameter (for example, the population mean).
Based on this sample, the estimated population mean is 10, and the unbiased estimate of population variance is 30. Both the naïve algorithm and two-pass algorithm compute these values correctly. Next consider the sample (10 8 + 4, 10 8 + 7, 10 8 + 13, 10 8 + 16), which gives rise to the same estimated variance as the first sample. The two-pass ...
These values are used to calculate an E value for the estimate and a standard deviation (SD) as L-estimators, where: E = (a + 4m + b) / 6 SD = (b − a) / 6. E is a weighted average which takes into account both the most optimistic and most pessimistic estimates provided. SD measures the variability or uncertainty in the estimate.
using a target variance for an estimate to be derived from the sample eventually obtained, i.e., if a high precision is required (narrow confidence interval) this translates to a low target variance of the estimator. the use of a power target, i.e. the power of statistical test to be applied once the sample is collected.
In statistics, an estimator is a rule for calculating an estimate of a given quantity based on observed data: thus the rule (the estimator), the quantity of interest (the estimand) and its result (the estimate) are distinguished. [1] For example, the sample mean is a commonly used estimator of the population mean. There are point and interval ...
It is especially useful for bias and variance estimation. The jackknife pre-dates other common resampling methods such as the bootstrap. Given a sample of size , a jackknife estimator can be built by aggregating the parameter estimates from each subsample of size () obtained by omitting one observation. [1]
We estimate the parameter θ using the sample mean of all observations: = = . This estimator has mean θ and variance of σ 2 / n, which is equal to the reciprocal of the Fisher information from the sample. Thus, the sample mean is a finite-sample efficient estimator for the mean of the normal distribution.
In estimating the population variance from a sample when the population mean is unknown, the uncorrected sample variance is the mean of the squares of deviations of sample values from the sample mean (i.e., using a multiplicative factor 1/n). In this case, the sample variance is a biased estimator of the population variance. Multiplying the ...