Search results
Results from the WOW.Com Content Network
In mathematics, the term maximal subgroup is used to mean slightly different things in different areas of algebra. In group theory, a maximal subgroup H of a group G is a proper subgroup, such that no proper subgroup K contains H strictly. In other words, H is a maximal element of the partially ordered set of subgroups of G that are not equal to G.
A large subgroup H (preferably a maximal subgroup) of the Monster is selected in which it is easy to perform calculations. The subgroup H chosen is 3 1+12.2.Suz.2, where Suz is the Suzuki group. Elements of the monster are stored as words in the elements of H and an extra generator T.
The group 2 F 4 (2) also occurs as a maximal subgroup of the Rudvalis group, as the point stabilizer of the rank-3 permutation action on 4060 = 1 + 1755 + 2304 points. The Tits group is one of the simple N-groups , and was overlooked in John G. Thompson 's first announcement of the classification of simple N -groups, as it had not been ...
The index of the normal subgroup not only has to be a divisor of n!, but must satisfy other criteria as well. Since the normal subgroup is a subgroup of H, its index in G must be n times its index inside H. Its index in G must also correspond to a subgroup of the symmetric group S n, the group of permutations of n objects.
A maximal compact subgroup is a maximal subgroup amongst compact subgroups – a maximal (compact subgroup) – rather than being (alternate possible reading) a maximal subgroup that happens to be compact; which would probably be called a compact (maximal subgroup), but in any case is not the intended meaning (and in fact maximal proper subgroups are not in general compact).
In mathematics, the Iwasawa decomposition (aka KAN from its expression) of a semisimple Lie group generalises the way a square real matrix can be written as a product of an orthogonal matrix and an upper triangular matrix (QR decomposition, a consequence of Gram–Schmidt orthogonalization).
A core-free subgroup is a subgroup whose normal core is the trivial subgroup. Equivalently, it is a subgroup that occurs as the isotropy subgroup of a transitive, faithful group action. The solution for the hidden subgroup problem in the abelian case generalizes to finding the normal core in case of subgroups of arbitrary groups.
Moreover, N = T kl is a minimal normal subgroup of G and G induces a transitive subgroup of S k. PA (product action): Here Ω = Δ k and G ≤ HwrS k where H is a primitive almost simple group on Δ with socle T. Thus G has a product action on Ω. Moreover, N = T k G and G induces a transitive subgroup of S k in its action on the k simple ...