Search results
Results from the WOW.Com Content Network
The likelihood ratio is central to likelihoodist statistics: the law of likelihood states that the degree to which data (considered as evidence) supports one parameter value versus another is measured by the likelihood ratio. In frequentist inference, the likelihood ratio is the basis for a test statistic, the so-called likelihood-ratio test.
Likelihood Ratio: An example "test" is that the physical exam finding of bulging flanks has a positive likelihood ratio of 2.0 for ascites. Estimated change in probability: Based on table above, a likelihood ratio of 2.0 corresponds to an approximately +15% increase in probability.
The likelihood ratio is a function of the data ; therefore, it is a statistic, although unusual in that the statistic's value depends on a parameter, . The likelihood-ratio test rejects the null hypothesis if the value of this statistic is too small.
Diagram relating pre- and post-test probabilities, with the green curve (upper left half) representing a positive test, and the red curve (lower right half) representing a negative test, for the case of 90% sensitivity and 90% specificity, corresponding to a likelihood ratio positive of 9, and a likelihood ratio negative of 0.111.
^ = the maximized value of the likelihood function of the model , i.e. ^ = (^,), where {^} are the parameter values that maximize the likelihood function and is the observed data; n {\displaystyle n} = the number of data points in x {\displaystyle x} , the number of observations , or equivalently, the sample size;
Each of the two competing models, the null model and the alternative model, is separately fitted to the data and the log-likelihood recorded. The test statistic (often denoted by D) is twice the log of the likelihoods ratio, i.e., it is twice the difference in the log-likelihoods:
Specifically, at each stage, after the removal of the highest ordered interaction, the likelihood ratio chi-square statistic is computed to measure how well the model is fitting the data. The highest ordered interactions are no longer removed when the likelihood ratio chi-square statistic becomes significant. [2]
In all model-based statistical inference, the likelihood function is of central importance, since it expresses the probability of the observed data under a particular statistical model, and thus quantifies the support data lend to particular values of parameters and to choices among different models. For simple models, an analytical formula for ...