Search results
Results from the WOW.Com Content Network
This conjecture is called "weak" because if Goldbach's strong conjecture (concerning sums of two primes) is proven, then this would also be true. For if every even number greater than 4 is the sum of two odd primes, adding 3 to each even number greater than 4 will produce the odd numbers greater than 7 (and 7 itself is equal to 2+2+3).
This is sometimes known as the extended Goldbach conjecture. The strong Goldbach conjecture is in fact very similar to the twin prime conjecture, and the two conjectures are believed to be of roughly comparable difficulty. Goldbach's comet; red, blue and green points correspond respectively the values 0, 1 and 2 modulo 3 of the number.
Goldbach's weak conjecture, every odd number greater than 5 can be expressed as the sum of three primes, is a consequence of Goldbach's conjecture. Ivan Vinogradov proved it for large enough n (Vinogradov's theorem) in 1937, [1] and Harald Helfgott extended this to a full proof of Goldbach's weak conjecture in 2013. [2] [3] [4]
Uniformity conjecture: diophantine geometry: n/a: Unique games conjecture: number theory: n/a: Vandiver's conjecture: number theory: Ernst Kummer and Harry Vandiver: Virasoro conjecture: algebraic geometry: Miguel Ángel Virasoro: Vizing's conjecture: graph theory: Vadim G. Vizing: Vojta's conjecture: number theory: ⇒abc conjecture: Paul ...
Goldbach's conjecture. Goldbach's weak conjecture; Second Hardy–Littlewood conjecture; Hardy–Littlewood circle method; Schinzel's hypothesis H; Bateman–Horn conjecture; Waring's problem. Brahmagupta–Fibonacci identity; Euler's four-square identity; Lagrange's four-square theorem; Taxicab number; Generalized taxicab number; Cabtaxi ...
One weak counterexample begins by taking some unsolved problem of mathematics, such as Goldbach's conjecture, which asks whether every even natural number larger than 4 is the sum of two primes. Define a sequence a(n) of rational numbers as follows: [9]
The Waring–Goldbach problem is a problem in additive number theory, concerning the representation of integers as sums of powers of prime numbers. It is named as a combination of Waring's problem on sums of powers of integers, and the Goldbach conjecture on sums of primes. It was initiated by Hua Luogeng [1] in 1938.
In number theory, Goldbach's weak conjecture, also known as the odd Goldbach conjecture, the ternary Goldbach problem, or the 3-primes problem, is the now-proven statement that Every odd number greater than 5 can be expressed as the sum of three primes. (A prime may be used more than once in the same sum).