Search results
Results from the WOW.Com Content Network
The weight of an object is a measure of the force exerted on the object by gravity, or the force needed to support it. The pull of gravity on the earth gives an object a downward acceleration of about 9.8 m/s 2. In trade and commerce and everyday use, the term "weight" is often used as a synonym for "mass".
A newton is defined as 1 kg⋅m/s 2 (it is a named derived unit defined in terms of the SI base units). [1]: 137 One newton is, therefore, the force needed to accelerate one kilogram of mass at the rate of one metre per second squared in the direction of the applied force.
In physics, reduced mass is a measure of the effective inertial mass of a system with two or more particles when the particles are interacting with each other. Reduced mass allows the two-body problem to be solved as if it were a one-body problem.
This experiment was also the first test of Newton's theory of gravitation between masses in the laboratory. It took place 111 years after the publication of Newton's Principia and 71 years after Newton's death, so none of Newton's calculations could use the value of G; instead he could only calculate a force relative to another force.
The SI unit of weight is the same as that of force: the newton (N) – a derived unit which can also be expressed in SI base units as kg⋅m/s 2 (kilograms times metres per second squared). [21] In commercial and everyday use, the term "weight" is usually used to mean mass, and the verb "to weigh" means "to determine the mass of" or "to have a ...
The reason for the minus sign is that the actual force (i.e., measured weight) on an object produced by a g-force is in the opposite direction to the sign of the g-force, since in physics, weight is not the force that produces the acceleration, but rather the equal-and-opposite reaction force to it.
[3] [14] In this work Newton set out three laws of motion that have dominated the way forces are described in physics to this day. [14] The precise ways in which Newton's laws are expressed have evolved in step with new mathematical approaches.
Some of the tests of the equivalence principle use names for the different ways mass appears in physical formulae. In nonrelativistic physics three kinds of mass can be distinguished: [14] Inertial mass intrinsic to an object, the sum of all of its mass–energy. Passive mass, the response to gravity, the object's weight.