enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Basic feasible solution - Wikipedia

    en.wikipedia.org/wiki/Basic_feasible_solution

    Each basis determines a unique BFS: for each basis B of m indices, there is at most one BFS with basis B. This is because x B {\displaystyle \mathbf {x_{B}} } must satisfy the constraint A B x B = b {\displaystyle A_{B}\mathbf {x_{B}} =b} , and by definition of basis the matrix A B {\displaystyle A_{B}} is non-singular, so the constraint has a ...

  3. Depth-first search - Wikipedia

    en.wikipedia.org/wiki/Depth-first_search

    The recursive implementation will visit the nodes from the example graph in the following order: A, B, D, F, E, C, G. The non-recursive implementation will visit the nodes as: A, E, F, B, D, C, G. The non-recursive implementation is similar to breadth-first search but differs from it in two ways: it uses a stack instead of a queue, and

  4. Breadth-first search - Wikipedia

    en.wikipedia.org/wiki/Breadth-first_search

    Animated example of a breadth-first search. Black: explored, grey: queued to be explored later on BFS on Maze-solving algorithm Top part of Tic-tac-toe game tree. Breadth-first search (BFS) is an algorithm for searching a tree data structure for a node that satisfies a given property.

  5. Tree traversal - Wikipedia

    en.wikipedia.org/wiki/Tree_traversal

    By contrast, a breadth-first search will never reach the grandchildren, as it seeks to exhaust the children first. A more sophisticated analysis of running time can be given via infinite ordinal numbers ; for example, the breadth-first search of the depth 2 tree above will take ω ·2 steps: ω for the first level, and then another ω for the ...

  6. Graph traversal - Wikipedia

    en.wikipedia.org/wiki/Graph_traversal

    A breadth-first search (BFS) is another technique for traversing a finite graph. BFS visits the sibling vertices before visiting the child vertices, and a queue is used in the search process. This algorithm is often used to find the shortest path from one vertex to another.

  7. Iterative deepening depth-first search - Wikipedia

    en.wikipedia.org/wiki/Iterative_deepening_depth...

    IDDFS achieves breadth-first search's completeness (when the branching factor is finite) using depth-first search's space-efficiency. If a solution exists, it will find a solution path with the fewest arcs. [2] Iterative deepening visits states multiple times, and it may seem wasteful.

  8. Parallel breadth-first search - Wikipedia

    en.wikipedia.org/wiki/Parallel_breadth-first_search

    The breadth-first-search algorithm is a way to explore the vertices of a graph layer by layer. It is a basic algorithm in graph theory which can be used as a part of other graph algorithms. For instance, BFS is used by Dinic's algorithm to find maximum flow in a graph.

  9. Connectivity (graph theory) - Wikipedia

    en.wikipedia.org/wiki/Connectivity_(graph_theory)

    The problem of determining whether two vertices in a graph are connected can be solved efficiently using a search algorithm, such as breadth-first search. More generally, it is easy to determine computationally whether a graph is connected (for example, by using a disjoint-set data structure ), or to count the number of connected components.