Search results
Results from the WOW.Com Content Network
A template for displaying common fractions of the form int+num/den nicely. It supports 0–3 anonymous parameters with positional meaning. Template parameters [Edit template data] Parameter Description Type Status leftmost part 1 Denominator if only parameter supplied. Numerator if 2 parameters supplied. Integer if 3 parameters supplied. If no parameter is specified the template will render a ...
1 ⁄ 3: 0.333... Vulgar Fraction One Third 2153 8531 ⅔ 2 ⁄ 3: 0.666... Vulgar Fraction Two Thirds 2154 8532 ⅕ 1 ⁄ 5: 0.2 Vulgar Fraction One Fifth 2155 8533 ⅖ 2 ⁄ 5: 0.4 Vulgar Fraction Two Fifths 2156 8534 ⅗ 3 ⁄ 5: 0.6 Vulgar Fraction Three Fifths 2157 8535 ⅘ 4 ⁄ 5: 0.8 Vulgar Fraction Four Fifths 2158 8536 ⅙ 1 ⁄ 6: 0 ...
The most common superscript digits (1, 2, and 3) were included in ISO-8859-1 and were therefore carried over into those code points in the Latin-1 range of Unicode. The remainder were placed along with basic arithmetical symbols, and later some Latin subscripts, in a dedicated block at U+2070 to U+209F.
The Latin-1 Supplement (also called C1 Controls and Latin-1 Supplement) is the second Unicode block in the Unicode standard. It encodes the upper range of ISO 8859-1: 80 (U+0080) - FF (U+00FF).
In decimal numbers greater than 1 (such as 3.75), the fractional part of the number is expressed by the digits to the right of the separator (with a value of 0.75 in this case). 3.75 can be written either as an improper fraction, 375 / 100 , or as a mixed number, 3 + 75 / 100 .
The Universal Coded Character Set (UCS, Unicode) is a standard set of characters defined by the international standard ISO/IEC 10646, Information technology — Universal Coded Character Set (UCS) (plus amendments to that standard), which is the basis of many character encodings, improving as characters from previously unrepresented writing systems are added.
For example, 1 / 4 , 5 / 6 , and −101 / 100 are all irreducible fractions. On the other hand, 2 / 4 is reducible since it is equal in value to 1 / 2 , and the numerator of 1 / 2 is less than the numerator of 2 / 4 . A fraction that is reducible can be reduced by dividing both the numerator ...
It then returns 2 n+1 7 k-1 and repeats. The only times that the sequence of state numbers generated by the algorithm produces a power of 2 is when k is 1 (so that the exponent of 7 is 0), which only occurs if the exponent of 2 is a prime. A step-by-step explanation of Conway's algorithm can be found in Havil (2007).