Search results
Results from the WOW.Com Content Network
While most of the tests deal with the convergence of infinite series, they can also be used to show the convergence or divergence of infinite products. This can be achieved using following theorem: Let { a n } n = 1 ∞ {\displaystyle \left\{a_{n}\right\}_{n=1}^{\infty }} be a sequence of positive numbers.
In mathematics, Dirichlet's test is a method of testing for the convergence of a series that is especially useful for proving conditional convergence. It is named after its author Peter Gustav Lejeune Dirichlet , and was published posthumously in the Journal de Mathématiques Pures et Appliquées in 1862.
The Cauchy convergence test is a method used to test infinite series for convergence. It relies on bounding sums of terms in the series. It relies on bounding sums of terms in the series. This convergence criterion is named after Augustin-Louis Cauchy who published it in his textbook Cours d'Analyse 1821.
In mathematics, the integral test for convergence is a method used to test infinite series of monotonic terms for convergence. It was developed by Colin Maclaurin and Augustin-Louis Cauchy and is sometimes known as the Maclaurin–Cauchy test .
In mathematics, the Cauchy condensation test, named after Augustin-Louis Cauchy, is a standard convergence test for infinite series. For a non-increasing sequence f ( n ) {\displaystyle f(n)} of non-negative real numbers , the series ∑ n = 1 ∞ f ( n ) {\textstyle \sum \limits _{n=1}^{\infty }f(n)} converges if and only if the "condensed ...
Even a jump discontinuity does not pose a problem: if the function has left and right derivatives at x, then the Fourier series converges to the average of the left and right limits (but see Gibbs phenomenon). The Dirichlet–Dini Criterion (see Dirichlet conditions and Dini test) states that: if ƒ is 2 π –periodic, locally integrable and ...
In mathematics, the Weierstrass M-test is a test for determining whether an infinite series of functions converges uniformly and absolutely. It applies to series whose terms are bounded functions with real or complex values, and is analogous to the comparison test for determining the convergence of series of real or complex numbers.
In mathematics, the ratio test is a test (or "criterion") for the convergence of a series =, where each term is a real or complex number and a n is nonzero when n is large. The test was first published by Jean le Rond d'Alembert and is sometimes known as d'Alembert's ratio test or as the Cauchy ratio test.