Search results
Results from the WOW.Com Content Network
The bow shock forms the outermost layer of the magnetosphere; the boundary between the magnetosphere and the surrounding medium. For stars, this is usually the boundary between the stellar wind and interstellar medium; for planets, the speed of the solar wind there decreases as it approaches the magnetopause. [6]
The magnetosphere of Saturn is the cavity created in the flow of the solar wind by the planet's internally generated magnetic field. Discovered in 1979 by the Pioneer 11 spacecraft, Saturn's magnetosphere is the second largest of any planet in the Solar System after Jupiter .
Neptune's bow shock, where the magnetosphere begins to slow the solar wind, occurs at a distance of 34.9 times the radius of the planet. The magnetopause , where the pressure of the magnetosphere counterbalances the solar wind, lies at a distance of 23–26.5 times the radius of Neptune.
A magnetosphere is a region of space surrounding a planet where the planet's magnetic field dominates, creating a protective zone against solar and cosmic particle radiation.
Generated by the churning molten metals in Earth’s core, the magnetosphere shields the planet from harmful solar radiation and keeps solar winds from stripping away Earth’s atmosphere.
The magnetosphere of Jupiter is the cavity created in the solar wind by Jupiter's magnetic field.Extending up to seven million kilometers in the Sun's direction and almost to the orbit of Saturn in the opposite direction, Jupiter's magnetosphere is the largest and most powerful of any planetary magnetosphere in the Solar System, and by volume the largest known continuous structure in the Solar ...
Simplified geodynamo models have shown relationships between the dynamo number (determined by variance in rotational rates in the outer core and mirror-asymmetric convection (e.g. when convection favors one direction in the north and the other in the south)) and magnetic pole reversals as well as found similarities between the geodynamo and the ...
This results in the rotation speed roughly matching the orbital speed around perihelion. [14] Many exoplanets (especially the close-in ones) are expected to be in spin–orbit resonances higher than 1:1. A Mercury-like terrestrial planet can, for example, become captured in a 3:2, 2:1, or 5:2 spin–orbit resonance, with the probability of each ...