Search results
Results from the WOW.Com Content Network
Distinguishing these VSI spacetimes from Minkowski spacetime requires comparing non-polynomial invariants [1] or carrying out the full Cartan–Karlhede algorithm on non-scalar quantities. [2] [3] All VSI spacetimes are Kundt spacetimes. [4] An example with this property in four dimensions is a pp-wave.
The principle of local Lorentz covariance, which states that the laws of special relativity hold locally about each point of spacetime, lends further support to the choice of a manifold structure for representing spacetime, as locally around a point on a general manifold, the region 'looks like', or approximates very closely Minkowski space ...
In physics, spacetime, also called the space-time continuum, is a mathematical model that fuses the three dimensions of space and the one dimension of time into a single four-dimensional continuum. Spacetime diagrams are useful in visualizing and understanding relativistic effects, such as how different observers perceive where and when events ...
Spacetime topology is the topological structure of spacetime, a topic studied primarily in general relativity. This physical theory models gravitation as the curvature of a four dimensional Lorentzian manifold (a spacetime) and the concepts of topology thus become important in analysing local as well as global aspects of spacetime.
In the spacetime diagram, the dashed line represents a set of points considered to be simultaneous with the origin by an observer moving with a velocity v of one-quarter of the speed of light. The dotted horizontal line represents the set of points regarded as simultaneous with the origin by a stationary observer.
The Kerr metric or Kerr geometry describes the geometry of empty spacetime around a rotating uncharged axially symmetric black hole with a quasispherical event horizon.The Kerr metric is an exact solution of the Einstein field equations of general relativity; these equations are highly non-linear, which makes exact solutions very difficult to find.
Lorentz covariance, a related concept, is a property of the underlying spacetime manifold. Lorentz covariance has two distinct, but closely related meanings: A physical quantity is said to be Lorentz covariant if it transforms under a given representation of the Lorentz group.
De Sitter suggested that spacetime curvature might not be due solely to gravity [2] but he did not give any mathematical details of how this could be accomplished. In 1968 Henri Bacry and Jean-Marc Lévy-Leblond showed that the de Sitter group was the most general group compatible with isotropy, homogeneity and boost invariance. [3]