Search results
Results from the WOW.Com Content Network
The Harris–Benedict equation (also called the Harris-Benedict principle) is a method used to estimate an individual's basal metabolic rate (BMR).. The estimated BMR value may be multiplied by a number that corresponds to the individual's activity level; the resulting number is the approximate daily kilocalorie intake to maintain current body weight.
In the early 1970s, computer technology enabled on-site data processing, some real-time analysis, and even graphical displays of metabolic variables, such as O 2, CO 2, and air-flow, thereby encouraging academic institutions to test accuracy and precision in new ways.
The Schofield Equation is a method of estimating the basal metabolic rate (BMR) of adult men and women published in 1985. [1] This is the equation used by the WHO in their technical report series. [2] The equation that is recommended to estimate BMR by the US Academy of Nutrition and Dietetics is the Mifflin-St. Jeor equation. [3]
Basal metabolic rate (BMR) is the rate of energy expenditure per unit time by endothermic animals at rest. [1] It is reported in energy units per unit time ranging from watt (joule/second) to ml O 2 /min or joule per hour per kg body mass J/(h·kg).
Resting metabolic rate generally composes 60 to 75 percent of TDEE. [1] Because adipose tissue does not use much energy to maintain, fat free mass is a better predictor of metabolic rate. A taller person will typically have less fat mass than a shorter person at the same weight and therefore burn more energy.
In fact, he made her do it again -- and he called her new 144 over 92 reading "much better." Before taking the test, Dr. Oz suggests having a relatively empty stomach -- but more importantly, an ...
The Weir formula is a formula used in indirect calorimetry, relating metabolic rate to oxygen consumption and carbon dioxide production. According to original source, it says: [1]
The metabolic equivalent of task (MET) is the objective measure of the ratio of the rate at which a person expends energy, relative to the mass of that person, while performing some specific physical activity compared to a reference, currently set by convention at an absolute 3.5 mL of oxygen per kg per minute, which is the energy expended when sitting quietly by a reference individual, chosen ...