Search results
Results from the WOW.Com Content Network
Direct-sequence spread-spectrum transmissions multiply the symbol sequence being transmitted with a spreading sequence that has a higher rate than the original message rate. Usually, sequences are chosen such that the resulting spectrum is spectrally white. Knowledge of the same sequence is used to reconstruct the original data at the receiving ...
CDMA is a spread-spectrum multiple-access technique. A spread-spectrum technique spreads the bandwidth of the data uniformly for the same transmitted power. A spreading code is a pseudo-random code in the time domain that has a narrow ambiguity function in the frequency domain, unlike other narrow pulse codes. In CDMA a locally generated code ...
In a binary direct-sequence system, each chip is typically a rectangular pulse of +1 or −1 amplitude, which is multiplied by a data sequence (similarly +1 or −1 representing the message bits) and by a carrier waveform to make the transmitted signal. The chips are therefore just the bit sequence out of the code generator; they are called ...
Barker codes of length N equal to 11 and 13 are used in direct-sequence spread spectrum and pulse compression radar systems because of their low autocorrelation properties (the sidelobe level of amplitude of the Barker codes is 1/N that of the peak signal). [15]
Moreover, for a given noise power spectral density (PSD), spread-spectrum systems require the same amount of energy per bit before spreading as narrowband systems and therefore the same amount of power if the bitrate before spreading is the same, but since the signal power is spread over a large bandwidth, the signal PSD is much lower — often ...
Studies show that under ideal propagation conditions (simulations), direct-sequence spread spectrum (DSSS) provides the highest throughput for all nodes on a network when used in conjunction with CSMA/CA and the IEEE 802.11 RTS/CTS exchange under light network load conditions.
K. Fazel and S. Kaiser, Multi-Carrier and Spread Spectrum Systems: From OFDM and MC-CDMA to LTE and WiMAX, 2nd Edition, John Wiley & Sons, 2008, ISBN 978-0-470-99821-2. Hughes Software Systems, Multi Carrier Code Division Multiple Access, March 2002.
In August 2007, IEEE 802.15.4a was released expanding the four PHYs available in the earlier 2006 version to six, including one PHY using direct sequence ultra-wideband (UWB) and another using chirp spread spectrum (CSS). The UWB PHY is allocated frequencies in three ranges: below 1 GHz, between 3 and 5 GHz, and between 6 and 10 GHz.