Search results
Results from the WOW.Com Content Network
The time evolution of Hamilton's equations is a symplectomorphism, meaning that it conserves the symplectic 2-form. A numerical scheme is a symplectic integrator if it also conserves this 2-form. Symplectic integrators possess, as a conserved quantity, a Hamiltonian which is slightly perturbed from the original one. [1]
An animation of the figure-8 solution to the three-body problem over a single period T ≃ 6.3259 [13] 20 examples of periodic solutions to the three-body problem. In the 1970s, Michel Hénon and Roger A. Broucke each found a set of solutions that form part of the same family of solutions: the Broucke–Hénon–Hadjidemetriou family. In this ...
The sum over r covers other degrees of freedom specific for the field, such as polarization or spin; it usually comes out as a sum from 1 to 2 or from 1 to 3. E p is the relativistic energy for a momentum p quantum of the field, = m 2 c 4 + c 2 p 2 {\textstyle ={\sqrt {m^{2}c^{4}+c^{2}\mathbf {p} ^{2}}}} when the rest mass is m .
There are two main descriptions of motion: dynamics and kinematics.Dynamics is general, since the momenta, forces and energy of the particles are taken into account. In this instance, sometimes the term dynamics refers to the differential equations that the system satisfies (e.g., Newton's second law or Euler–Lagrange equations), and sometimes to the solutions to those equations.
The quantum harmonic oscillator with an applied uniform field [1] The Inverse square root potential [2] The periodic potential The particle in a lattice; The particle in a lattice of finite length [3] The Pöschl–Teller potential; The quantum pendulum; The three-dimensional potentials The rotating system The linear rigid rotor; The symmetric top
Perturbation theory has been used in a large number of different settings in physics and applied mathematics. Examples of the "collection of equations" include algebraic equations, [6] differential equations [7] (e.g., the equations of motion [8] and commonly wave equations), thermodynamic free energy in statistical mechanics, radiative ...
One particle: N particles: One dimension ^ = ^ + = + ^ = = ^ + (,,) = = + (,,) where the position of particle n is x n. = + = = +. (,) = /.There is a further restriction — the solution must not grow at infinity, so that it has either a finite L 2-norm (if it is a bound state) or a slowly diverging norm (if it is part of a continuum): [1] ‖ ‖ = | |.
The function Ai(x) and the related function Bi(x), are linearly independent solutions to the differential equation =, known as the Airy equation or the Stokes equation. Because the solution of the linear differential equation = is oscillatory for k<0 and exponential for k>0, the Airy functions are oscillatory for x<0 and exponential for x>0.