enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Symplectic integrator - Wikipedia

    en.wikipedia.org/wiki/Symplectic_integrator

    The time evolution of Hamilton's equations is a symplectomorphism, meaning that it conserves the symplectic 2-form. A numerical scheme is a symplectic integrator if it also conserves this 2-form. Symplectic integrators possess, as a conserved quantity, a Hamiltonian which is slightly perturbed from the original one. [1]

  3. Three-body problem - Wikipedia

    en.wikipedia.org/wiki/Three-body_problem

    An animation of the figure-8 solution to the three-body problem over a single period T ≃ 6.3259 [13] 20 examples of periodic solutions to the three-body problem. In the 1970s, Michel Hénon and Roger A. Broucke each found a set of solutions that form part of the same family of solutions: the Broucke–Hénon–Hadjidemetriou family. In this ...

  4. Mathematical formulation of the Standard Model - Wikipedia

    en.wikipedia.org/wiki/Mathematical_formulation...

    The sum over r covers other degrees of freedom specific for the field, such as polarization or spin; it usually comes out as a sum from 1 to 2 or from 1 to 3. E p is the relativistic energy for a momentum p quantum of the field, = m 2 c 4 + c 2 p 2 {\textstyle ={\sqrt {m^{2}c^{4}+c^{2}\mathbf {p} ^{2}}}} when the rest mass is m .

  5. Equations of motion - Wikipedia

    en.wikipedia.org/wiki/Equations_of_motion

    There are two main descriptions of motion: dynamics and kinematics.Dynamics is general, since the momenta, forces and energy of the particles are taken into account. In this instance, sometimes the term dynamics refers to the differential equations that the system satisfies (e.g., Newton's second law or Euler–Lagrange equations), and sometimes to the solutions to those equations.

  6. List of quantum-mechanical systems with analytical solutions

    en.wikipedia.org/wiki/List_of_quantum-mechanical...

    The quantum harmonic oscillator with an applied uniform field [1] The Inverse square root potential [2] The periodic potential The particle in a lattice; The particle in a lattice of finite length [3] The Pöschl–Teller potential; The quantum pendulum; The three-dimensional potentials The rotating system The linear rigid rotor; The symmetric top

  7. Perturbation theory - Wikipedia

    en.wikipedia.org/wiki/Perturbation_theory

    Perturbation theory has been used in a large number of different settings in physics and applied mathematics. Examples of the "collection of equations" include algebraic equations, [6] differential equations [7] (e.g., the equations of motion [8] and commonly wave equations), thermodynamic free energy in statistical mechanics, radiative ...

  8. List of equations in quantum mechanics - Wikipedia

    en.wikipedia.org/wiki/List_of_equations_in...

    One particle: N particles: One dimension ^ = ^ + = + ^ = = ^ + (,,) = = + (,,) where the position of particle n is x n. = + = = +. (,) = /.There is a further restriction — the solution must not grow at infinity, so that it has either a finite L 2-norm (if it is a bound state) or a slowly diverging norm (if it is part of a continuum): [1] ‖ ‖ = | |.

  9. Airy function - Wikipedia

    en.wikipedia.org/wiki/Airy_function

    The function Ai(x) and the related function Bi(x), are linearly independent solutions to the differential equation =, known as the Airy equation or the Stokes equation. Because the solution of the linear differential equation = is oscillatory for k<0 and exponential for k>0, the Airy functions are oscillatory for x<0 and exponential for x>0.