enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Si Stebbins stack - Wikipedia

    en.wikipedia.org/wiki/Si_Stebbins_stack

    The Si Stebbins stack is a cyclic mathematical card stack. It was popularized by the magician Si Stebbins, and can be constructed from a standard 52-card deck. [ 1 ] Frequently used in card magic, its properties allow the position and value of each card in a deck to be determined.

  3. Packing problems - Wikipedia

    en.wikipedia.org/wiki/Packing_problems

    Packing squares in a square: Optimal solutions have been proven for n from 1-10, 14-16, 22-25, 33-36, 62-64, 79-81, 98-100, and any square integer. The wasted space is asymptotically O(a 3/5). Packing squares in a circle: Good solutions are known for n ≤ 35. The optimal packing of 10 squares in a square

  4. Block-stacking problem - Wikipedia

    en.wikipedia.org/wiki/Block-stacking_problem

    The first nine blocks in the solution to the single-wide block-stacking problem with the overhangs indicated. In statics, the block-stacking problem (sometimes known as The Leaning Tower of Lire (Johnson 1955), also the book-stacking problem, or a number of other similar terms) is a puzzle concerning the stacking of blocks at the edge of a table.

  5. List comprehension - Wikipedia

    en.wikipedia.org/wiki/List_comprehension

    Here, the list [0..] represents , x^2>3 represents the predicate, and 2*x represents the output expression.. List comprehensions give results in a defined order (unlike the members of sets); and list comprehensions may generate the members of a list in order, rather than produce the entirety of the list thus allowing, for example, the previous Haskell definition of the members of an infinite list.

  6. Square packing - Wikipedia

    en.wikipedia.org/wiki/Square_packing

    Square packing in a square is the problem of determining the maximum number of unit squares (squares of side length one) that can be packed inside a larger square of side length . If a {\displaystyle a} is an integer , the answer is a 2 , {\displaystyle a^{2},} but the precise – or even asymptotic – amount of unfilled space for an arbitrary ...

  7. Circle packing - Wikipedia

    en.wikipedia.org/wiki/Circle_packing

    In the two-dimensional Euclidean plane, Joseph Louis Lagrange proved in 1773 that the highest-density lattice packing of circles is the hexagonal packing arrangement, [1] in which the centres of the circles are arranged in a hexagonal lattice (staggered rows, like a honeycomb), and each circle is surrounded by six other circles.

  8. Sphere packing - Wikipedia

    en.wikipedia.org/wiki/Sphere_packing

    Despite this difficulty, K. Böröczky gives a universal upper bound for the density of sphere packings of hyperbolic n-space where n ≥ 2. [29] In three dimensions the Böröczky bound is approximately 85.327613%, and is realized by the horosphere packing of the order-6 tetrahedral honeycomb with Schläfli symbol {3,3,6}. [30]

  9. Multi-chip module - Wikipedia

    en.wikipedia.org/wiki/Multi-chip_module

    A ceramic multi-chip module containing four POWER5 processor dies (center) and four 36 MB L3 cache dies (periphery). A multi-chip module (MCM) is generically an electronic assembly (such as a package with a number of conductor terminals or "pins") where multiple integrated circuits (ICs or "chips"), semiconductor dies and/or other discrete components are integrated, usually onto a unifying ...

  1. Related searches round stacking side tables x2 mcm 1 3 2 comprehension quiz asl

    round stacking side tables x2 mcm 1 3 2 comprehension quiz asl answers