Search results
Results from the WOW.Com Content Network
Gravitational time dilation is a form of time dilation, an actual difference of elapsed time between two events, as measured by observers situated at varying distances from a gravitating mass. The lower the gravitational potential (the closer the clock is to the source of gravitation), the slower time passes, speeding up as the gravitational ...
t r is the elapsed time for an observer at radial coordinate r within the gravitational field; t is the elapsed time for an observer distant from the massive object (and therefore outside of the gravitational field); r is the radial coordinate of the observer (which is analogous to the classical distance from the center of the object);
Albert Einstein, who had developed his theory of general relativity in 1915, initially denied the possibility of black holes, [4] even though they were a genuine implication of the Schwarzschild metric, obtained by Karl Schwarzschild in 1916, the first known non-trivial exact solution to Einstein's field equations. [1]
[5] [8] A gravitational redshift can also equivalently be interpreted as gravitational time dilation at the source of the radiation: [8] [2] if two oscillators (attached to transmitters producing electromagnetic radiation) are operating at different gravitational potentials, the oscillator at the higher gravitational potential (farther from the ...
This gravitational frequency shift corresponds to a gravitational time dilation: Since the "higher" observer measures the same light wave to have a lower frequency than the "lower" observer, time must be passing faster for the higher observer. Thus, time runs more slowly for observers the lower they are in a gravitational field.
More generally, processes close to a massive body run more slowly when compared with processes taking place farther away; this effect is known as gravitational time dilation. [64] Gravitational redshift has been measured in the laboratory [65] and using astronomical observations. [66] Gravitational time dilation in the Earth's gravitational ...
The sources of any gravitational field (matter and energy) is represented in relativity by a type (0, 2) symmetric tensor called the energy–momentum tensor. It is closely related to the Ricci tensor. Being a second rank tensor in four dimensions, the energy–momentum tensor may be viewed as a 4 by 4 matrix.
In (1+1) dimensions, i.e. a space made of one spatial dimension and one time dimension, the metric for two bodies of equal masses can be solved analytically in terms of the Lambert W function. [11] However, the gravitational energy between the two bodies is exchanged via dilatons rather than gravitons which require three-space in which to ...