enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Orbital period - Wikipedia

    en.wikipedia.org/wiki/Orbital_period

    The orbital period (also revolution period) is the amount of time a given astronomical object takes to complete one orbit around another object. In astronomy , it usually applies to planets or asteroids orbiting the Sun , moons orbiting planets, exoplanets orbiting other stars , or binary stars .

  3. Neptune - Wikipedia

    en.wikipedia.org/wiki/Neptune

    The long orbital period of Neptune means that the seasons last for forty Earth years. [109] Its sidereal rotation period (day) is roughly 16.11 hours. [ 12 ] Because its axial tilt is comparable to Earth's, the variation in the length of its day over the course of its long year is not any more extreme.

  4. List of gravitationally rounded objects of the Solar System

    en.wikipedia.org/wiki/List_of_gravitationally...

    Rotation period days: 25.38 Orbital period about Galactic Center [4] million years 225–250 Mean orbital speed [4] km/s: ≈ 220 Axial tilt to the ecliptic: deg. 7.25 Axial tilt to the galactic plane: deg. 67.23 Mean surface temperature: K: 5,778 Mean coronal temperature [5] K: 1–2 × 10 6: Photospheric composition H, He, O, C, Fe, S

  5. Stability of the Solar System - Wikipedia

    en.wikipedia.org/wiki/Stability_of_the_Solar_System

    An orbital resonance happens when the periods of any two objects have a simple numerical ratio. The most fundamental period for an object in the Solar System is its orbital period, and orbital resonances pervade the Solar System.

  6. Titius–Bode law - Wikipedia

    en.wikipedia.org/wiki/Titius–Bode_law

    The formula suggests that, extending outward, each planet should be approximately twice as far from the Sun as the one before. The hypothesis correctly anticipated the orbits of Ceres (in the asteroid belt) and Uranus, but failed as a predictor of Neptune's orbit. It is named after Johann Daniel Titius and Johann Elert Bode.

  7. Kepler's laws of planetary motion - Wikipedia

    en.wikipedia.org/wiki/Kepler's_laws_of_planetary...

    The accuracy of this calculation requires that the two dates chosen be along the elliptical orbit's minor axis and that the midpoints of each half be along the major axis. As the two dates chosen here are equinoxes, this will be correct when perihelion, the date the Earth is closest to the Sun, falls on a solstice. The current perihelion, near ...

  8. Neptunian desert - Wikipedia

    en.wikipedia.org/wiki/Neptunian_Desert

    Distribution of mass versus orbital period for planets with a measured mass. Black lines represent the Neptunian desert. NGTS-4b is shown as a red cross.. The Neptunian desert or sub-Jovian desert is broadly defined as the region close to a star (period < 2–4 days) where no Neptune-sized (> 0.1 M J) exoplanets are found. [1]

  9. Exoplanet orbital and physical parameters - Wikipedia

    en.wikipedia.org/wiki/Exoplanet_orbital_and...

    Mercury, the closest planet to the Sun at 0.4 astronomical units (AU), takes 88 days for an orbit, but the smallest known orbits of exoplanets have orbital periods of only a few hours, see Ultra-short period planet. The Kepler-11 system has five of its planets in smaller orbits than Mercury's.