Search results
Results from the WOW.Com Content Network
In mathematics, the inverse function of a function f (also called the inverse of f) is a function that undoes the operation of f. The inverse of f exists if and only if f is bijective , and if it exists, is denoted by f − 1 . {\displaystyle f^{-1}.}
For functions of a single variable, the theorem states that if is a continuously differentiable function with nonzero derivative at the point ; then is injective (or bijective onto the image) in a neighborhood of , the inverse is continuously differentiable near = (), and the derivative of the inverse function at is the reciprocal of the derivative of at : ′ = ′ = ′ (()).
In calculus, the inverse function rule is a formula that expresses the derivative of the inverse of a bijective and differentiable function f in terms of the derivative of f. More precisely, if the inverse of f {\displaystyle f} is denoted as f − 1 {\displaystyle f^{-1}} , where f − 1 ( y ) = x {\displaystyle f^{-1}(y)=x} if and only if f ...
The above theorem generalizes in the obvious way to holomorphic functions: Let and be two open and simply connected sets of , and assume that : is a biholomorphism. Then f {\displaystyle f} and f − 1 {\displaystyle f^{-1}} have antiderivatives, and if F {\displaystyle F} is an antiderivative of f {\displaystyle f} , the general antiderivative ...
Similar to the sine and cosine functions, the inverse trigonometric functions can also be calculated using power series, as follows. For arcsine, the series can be derived by expanding its derivative, 1 1 − z 2 {\textstyle {\tfrac {1}{\sqrt {1-z^{2}}}}} , as a binomial series , and integrating term by term (using the integral definition as ...
Pages in category "Inverse functions" The following 17 pages are in this category, out of 17 total. This list may not reflect recent changes. ...
This inverse is the exponential function. Many other real functions are defined either by the implicit function theorem (the inverse function is a particular instance) or as solutions of differential equations. For example, the sine and the cosine functions are the solutions of the linear differential equation ″ + = such that
The notation convention chosen here (with W 0 and W −1) follows the canonical reference on the Lambert W function by Corless, Gonnet, Hare, Jeffrey and Knuth. [3]The name "product logarithm" can be understood as this: Since the inverse function of f(w) = e w is called the logarithm, it makes sense to call the inverse "function" of the product we w as "product logarithm".