enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Inverse function - Wikipedia

    en.wikipedia.org/wiki/Inverse_function

    If f(x)=y, then g(y)=x. The function g must equal the inverse of f on the image of f, but may take any values for elements of Y not in the image. A function f with nonempty domain is injective if and only if it has a left inverse. [21] An elementary proof runs as follows: If g is the left inverse of f, and f(x) = f(y), then g(f(x)) = g(f(y ...

  3. Inverse function rule - Wikipedia

    en.wikipedia.org/wiki/Inverse_function_rule

    In calculus, the inverse function rule is a formula that expresses the derivative of the inverse of a bijective and differentiable function f in terms of the derivative of f. More precisely, if the inverse of f {\displaystyle f} is denoted as f − 1 {\displaystyle f^{-1}} , where f − 1 ( y ) = x {\displaystyle f^{-1}(y)=x} if and only if f ...

  4. Inverse function theorem - Wikipedia

    en.wikipedia.org/wiki/Inverse_function_theorem

    The inverse function theorem can also be generalized to differentiable maps between Banach spaces X and Y. [20] Let U be an open neighbourhood of the origin in X and F : U → Y {\displaystyle F:U\to Y\!} a continuously differentiable function, and assume that the Fréchet derivative d F 0 : XY {\displaystyle dF_{0}:X\to Y\!} of F at 0 is ...

  5. Function composition - Wikipedia

    en.wikipedia.org/wiki/Function_composition

    By convention, f 0 is defined as the identity map on f 's domain, id X. If Y = X and f: XX admits an inverse function f −1, negative functional powers f −n are defined for n > 0 as the negated power of the inverse function: f −n = (f −1) n. [12] [10] [11]

  6. Bijection, injection and surjection - Wikipedia

    en.wikipedia.org/wiki/Bijection,_injection_and...

    One has always Xf −1 (f(X)) and f(f −1 (Y)) ⊆ Y, where f(X) is the image of X and f −1 (Y) is the preimage of Y under f. If f is injective, then X = f −1 (f(X)), and if f is surjective, then f(f −1 (Y)) = Y. For every function h : XY, one can define a surjection H : X → h(X) : x → h(x) and an injection I : h(X) → Y ...

  7. Involution (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Involution_(mathematics)

    An involution is a function f : XX that, when applied twice, brings one back to the starting point. In mathematics, an involution, involutory function, or self-inverse function [1] is a function f that is its own inverse, f(f(x)) = x. for all x in the domain of f. [2] Equivalently, applying f twice produces the original value.

  8. Function (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Function_(mathematics)

    A function :, with domain X and codomain Y, is bijective, if for every y in Y, there is one and only one element x in X such that y = f(x). In this case, the inverse function of f is the function : that maps to the element such that y = f(x).

  9. Converse relation - Wikipedia

    en.wikipedia.org/wiki/Converse_relation

    A function is invertible if and only if its converse relation is a function, in which case the converse relation is the inverse function. The converse relation of a function f : XY {\displaystyle f:X\to Y} is the relation f − 1 ⊆ Y × X {\displaystyle f^{-1}\subseteq Y\times X} defined by the graph f − 1 = { ( y , x ) ∈ Y × X : y ...