Search results
Results from the WOW.Com Content Network
Barlow's formula (called "Kesselformel" [1] in German) relates the internal pressure that a pipe [2] can withstand to its dimensions and the strength of its material. This approximate formula is named after Peter Barlow, an English mathematician. [3] = Cylinder, where
The hoop stress equation for thin shells is also approximately valid for spherical vessels, including plant cells and bacteria in which the internal turgor pressure may reach several atmospheres. In practical engineering applications for cylinders (pipes and tubes), hoop stress is often re-arranged for pressure, and is called Barlow's formula.
The yield strength or yield stress is a material property and is the stress corresponding to the yield point at which the material begins to deform plastically. The yield strength is often used to determine the maximum allowable load in a mechanical component, since it represents the upper limit to forces that can be applied without producing ...
Probability density of stress S (red, top) and resistance R (blue, top), and of equality (m = R - S = 0, black, bottom). Distribution of stress S and strength R: all the (R, S) situations have a probability density (grey level surface). The area where the margin m = R - S is positive is the set of situation where the system is reliable (R > S).
The stress is proportional to the strain, that is, obeys the general Hooke's law, and the slope is Young's modulus. In this region, the material undergoes only elastic deformation. The end of the stage is the initiation point of plastic deformation. The stress component of this point is defined as yield strength (or upper yield point, UYP for ...
For example, if the static compression ratio is 10:1, and the dynamic compression ratio is 7.5:1, a useful value for cylinder pressure would be 7.5 1.3 × atmospheric pressure, or 13.7 bar (relative to atmospheric pressure). The two corrections for dynamic compression ratio affect cylinder pressure in opposite directions, but not in equal strength.
Stress analysis is specifically concerned with solid objects. The study of stresses in liquids and gases is the subject of fluid mechanics.. Stress analysis adopts the macroscopic view of materials characteristic of continuum mechanics, namely that all properties of materials are homogeneous at small enough scales.
As shown later in this article, at the onset of yielding, the magnitude of the shear yield stress in pure shear is √3 times lower than the tensile yield stress in the case of simple tension. Thus, we have: = where is tensile yield strength of the material. If we set the von Mises stress equal to the yield strength and combine the above ...