enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Inertial frame of reference - Wikipedia

    en.wikipedia.org/wiki/Inertial_frame_of_reference

    In classical physics and special relativity, an inertial frame of reference (also called an inertial space or a Galilean reference frame) is a frame of reference in which objects exhibit inertia: they remain at rest or in uniform motion relative to the frame until acted upon by external forces. In such a frame the laws of nature can be observed ...

  3. Quantum reference frame - Wikipedia

    en.wikipedia.org/wiki/Quantum_reference_frame

    An inertial reference frame (or inertial frame in short) is a frame in which all the physical laws hold. For instance, in a rotating reference frame, Newton's laws have to be modified because there is an extra Coriolis force (such frame is an example of non-inertial frame). Here, "rotating" means "rotating with respect to some inertial frame".

  4. Galilean invariance - Wikipedia

    en.wikipedia.org/wiki/Galilean_invariance

    An inertial frame is a reference frame in relative uniform motion to absolute space. All inertial frames share a universal time. Galilean relativity can be shown as follows. Consider two inertial frames S and S' . A physical event in S will have position coordinates r = (x, y, z) and time t in S, and r' = (x' , y' , z' ) and time t' in S' .

  5. Frame-dragging - Wikipedia

    en.wikipedia.org/wiki/Frame-dragging

    Thus, an inertial reference frame is entrained by the rotating central mass to participate in the latter's rotation; this is frame-dragging. The two surfaces on which the Kerr metric appears to have singularities; the inner surface is the oblate spheroid-shaped event horizon, whereas the outer surface is pumpkin-shaped.

  6. Frame of reference - Wikipedia

    en.wikipedia.org/wiki/Frame_of_reference

    In physics and astronomy, a frame of reference (or reference frame) is an abstract coordinate system, whose origin, orientation, and scale have been specified in physical space. It is based on a set of reference points , defined as geometric points whose position is identified both mathematically (with numerical coordinate values) and ...

  7. Center-of-momentum frame - Wikipedia

    en.wikipedia.org/wiki/Center-of-momentum_frame

    The center of momentum frame is defined as the inertial frame in which the sum of the linear momenta of all particles is equal to 0. Let S denote the laboratory reference system and S′ denote the center-of-momentum reference frame. Using a Galilean transformation, the particle velocity in S′ is

  8. Observer (special relativity) - Wikipedia

    en.wikipedia.org/wiki/Observer_(special_relativity)

    In special relativity, an observer is a frame of reference from which a set of objects or events are being measured. Usually this is an inertial reference frame or "inertial observer". Less often an observer may be an arbitrary non-inertial reference frame such as a Rindler frame which may be called an "accelerating observer".

  9. Bell's spaceship paradox - Wikipedia

    en.wikipedia.org/wiki/Bell's_spaceship_paradox

    "One may conclude that whenever a body is constrained to move in such a way that all parts of it have the same acceleration with respect to an inertial frame (or, alternatively, in such a way that with respect to an inertial frame its dimensions are fixed, and there is no rotation), then such a body must in general experience relativistic ...