Search results
Results from the WOW.Com Content Network
In classical physics and special relativity, an inertial frame of reference (also called an inertial space or a Galilean reference frame) is a frame of reference in which objects exhibit inertia: they remain at rest or in uniform motion relative to the frame until acted upon by external forces. In such a frame the laws of nature can be observed ...
An inertial reference frame (or inertial frame in short) is a frame in which all the physical laws hold. For instance, in a rotating reference frame, Newton's laws have to be modified because there is an extra Coriolis force (such frame is an example of non-inertial frame). Here, "rotating" means "rotating with respect to some inertial frame".
An inertial frame is a reference frame in relative uniform motion to absolute space. All inertial frames share a universal time. Galilean relativity can be shown as follows. Consider two inertial frames S and S' . A physical event in S will have position coordinates r = (x, y, z) and time t in S, and r' = (x' , y' , z' ) and time t' in S' .
Thus, an inertial reference frame is entrained by the rotating central mass to participate in the latter's rotation; this is frame-dragging. The two surfaces on which the Kerr metric appears to have singularities; the inner surface is the oblate spheroid-shaped event horizon, whereas the outer surface is pumpkin-shaped.
In physics and astronomy, a frame of reference (or reference frame) is an abstract coordinate system, whose origin, orientation, and scale have been specified in physical space. It is based on a set of reference points , defined as geometric points whose position is identified both mathematically (with numerical coordinate values) and ...
The center of momentum frame is defined as the inertial frame in which the sum of the linear momenta of all particles is equal to 0. Let S denote the laboratory reference system and S′ denote the center-of-momentum reference frame. Using a Galilean transformation, the particle velocity in S′ is
In special relativity, an observer is a frame of reference from which a set of objects or events are being measured. Usually this is an inertial reference frame or "inertial observer". Less often an observer may be an arbitrary non-inertial reference frame such as a Rindler frame which may be called an "accelerating observer".
"One may conclude that whenever a body is constrained to move in such a way that all parts of it have the same acceleration with respect to an inertial frame (or, alternatively, in such a way that with respect to an inertial frame its dimensions are fixed, and there is no rotation), then such a body must in general experience relativistic ...