Search results
Results from the WOW.Com Content Network
The magnetosphere of Jupiter is the largest planetary magnetosphere in the Solar System, extending up to 7,000,000 kilometers (4,300,000 mi) on the dayside and almost to the orbit of Saturn on the nightside. [17] Jupiter's magnetosphere is stronger than Earth's by an order of magnitude, and its magnetic moment is approximately 18,000 times ...
The magnetopause, the area where the pressures balance, is the boundary of the magnetosphere. Despite its name, the magnetosphere is asymmetric, with the sunward side being about 10 Earth radii out but with the other side stretching out in a magnetotail that extends beyond 200 Earth radii. [28]
Artistic representation of Earth's magnetosphere. The plasma sheet is highlighted in yellow. In the magnetosphere, the plasma sheet is a sheet-like region of denser (0.3-0.5 ions/cm 3 versus 0.01-0.02 in the lobes) [citation needed] hot plasma and lower magnetic field located on the magnetotail and near the equatorial plane, between the magnetosphere's north and south lobes.
The diagram is thoughtfully put together and I learned something from it, not finding myself distracted by crops or labels or pixelation. Plus I'm a sucker for diagrams.--Efbrazil 05:04, 23 May 2013 (UTC) Support I agree that it would make the earth too small if the elements were not cut off the way they are.
Today, Mars does not have a global magnetic field. However, Mars did power an early dynamo that produced a strong magnetic field 4 billion years ago, comparable to Earth's present surface field. After the early dynamo ceased, a weak late dynamo was reactivated (or persisted up to) ~3.8 billion years ago.
The following is a chronology of discoveries concerning the magnetosphere. 1600 - William Gilbert in London suggests the Earth is a giant magnet. 1741 - Hiorter and Anders Celsius note that the polar aurora is accompanied by a disturbance of the magnetic needle. 1820 - Hans Christian Ørsted discovers electric currents create magnetic effects.
Although Mercury's magnetic field is much weaker than Earth's magnetic field, it is still strong enough to deflect the solar wind, inducing a magnetosphere. Because Mercury's magnetic field is weak while the interplanetary magnetic field it interacts with in its orbit is relatively strong, the solar wind dynamic pressure at Mercury's orbit is ...
Schematic view of the different current systems which shape the Earth's magnetosphere. Earth's ring current is responsible for shielding the lower latitudes of the Earth from magnetospheric electric fields. It therefore has a large effect on the electrodynamics of geomagnetic storms.