Search results
Results from the WOW.Com Content Network
To derive the equations of special relativity, one must start with two other The laws of physics are invariant under transformations between inertial frames. In other words, the laws of physics will be the same whether you are testing them in a frame 'at rest', or a frame moving with a constant velocity relative to the 'rest' frame.
In special relativity, time dilation is most simply described in circumstances where relative velocity is unchanging. Nevertheless, the Lorentz equations allow one to calculate proper time and movement in space for the simple case of a spaceship which is applied with a force per unit mass, relative to some reference object in uniform (i.e ...
There is Robertson's test theory (1949) which predicts different experimental results from Einstein's special relativity, and there is the Mansouri–Sexl theory (1977) which is equivalent to Robertson's theory. There is also Edward's theory (1963) which cannot be called a test theory because it is physically equivalent to special relativity. [16]
These equations, together with the geodesic equation, [8] which dictates how freely falling matter moves through spacetime, form the core of the mathematical formulation of general relativity. The EFE is a tensor equation relating a set of symmetric 4 × 4 tensors. Each tensor has 10 independent components.
In physics, the special theory of relativity, or special relativity for short, is a scientific theory of the relationship between space and time. In Albert Einstein 's 1905 paper, On the Electrodynamics of Moving Bodies , the theory is presented as being based on just two postulates : [ p 1 ] [ 1 ] [ 2 ]
The Lorentz factor or Lorentz term (also known as the gamma factor [1]) is a dimensionless quantity expressing how much the measurements of time, length, and other physical properties change for an object while it moves. The expression appears in several equations in special relativity, and it arises in derivations of the Lorentz transformations.
Because relativity treats space and time as a whole, a relativistic generalization of this equation requires that space and time derivatives must enter symmetrically as they do in the Maxwell equations that govern the behavior of light — the equations must be differentially of the same order in space and time. In relativity, the momentum and ...
This equation holds for a body or system, such as one or more particles, with total energy E, invariant mass m 0, and momentum of magnitude p; the constant c is the speed of light. It assumes the special relativity case of flat spacetime [1] [2] [3] and that the particles are free.