enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Black hole thermodynamics - Wikipedia

    en.wikipedia.org/wiki/Black_hole_thermodynamics

    In physics, black hole thermodynamics [1] is the area of study that seeks to reconcile the laws of thermodynamics with the existence of black hole event horizons.As the study of the statistical mechanics of black-body radiation led to the development of the theory of quantum mechanics, the effort to understand the statistical mechanics of black holes has had a deep impact upon the ...

  3. Ruppeiner geometry - Wikipedia

    en.wikipedia.org/wiki/Ruppeiner_geometry

    This geometry has been applied to black hole thermodynamics, with some physically relevant results.The most physically significant case is for the Kerr black hole in higher dimensions, where the curvature singularity signals thermodynamic instability, as found earlier by conventional methods.

  4. Penrose process - Wikipedia

    en.wikipedia.org/wiki/Penrose_process

    The Penrose process (also called Penrose mechanism) is theorised by Sir Roger Penrose as a means whereby energy can be extracted from a rotating black hole. [1] [2] [3] The process takes advantage of the ergosphere – a region of spacetime around the black hole dragged by its rotation faster than the speed of light, meaning that from the point of view of an outside observer any matter inside ...

  5. Fuzzball (string theory) - Wikipedia

    en.wikipedia.org/wiki/Fuzzball_(string_theory)

    Fuzzballs are hypothetical objects in superstring theory, intended to provide a fully quantum description of the black holes predicted by general relativity.. The fuzzball hypothesis dispenses with the singularity at the heart of a black hole by positing that the entire region within the black hole's event horizon is actually an extended object: a ball of strings, which are advanced as the ...

  6. Hawking radiation - Wikipedia

    en.wikipedia.org/wiki/Hawking_radiation

    Hawking radiation is black body radiation released outside a black hole's event horizon due to quantum effects according to a model developed by Stephen Hawking in 1974. [1] The radiation was not predicted by previous models which assumed that once electromagnetic radiation is inside the event horizon, it cannot escape.

  7. Black hole - Wikipedia

    en.wikipedia.org/wiki/Black_hole

    A black hole with the mass of a car would have a diameter of about 10 −24 m and take a nanosecond to evaporate, during which time it would briefly have a luminosity of more than 200 times that of the Sun. Lower-mass black holes are expected to evaporate even faster; for example, a black hole of mass 1 TeV/c 2 would take less than 10 −88 ...

  8. Outline of black holes - Wikipedia

    en.wikipedia.org/wiki/Outline_of_black_holes

    Black hole thermodynamics – area of study that seeks to reconcile the laws of thermodynamics with the existence of black hole event horizons. Schwarzschild radius – distance from the center of an object such that, if all the mass of the object were compressed within that sphere, the escape speed from the surface would equal the speed of light.

  9. Kerr metric - Wikipedia

    en.wikipedia.org/wiki/Kerr_metric

    The Kerr metric or Kerr geometry describes the geometry of empty spacetime around a rotating uncharged axially symmetric black hole with a quasispherical event horizon.The Kerr metric is an exact solution of the Einstein field equations of general relativity; these equations are highly non-linear, which makes exact solutions very difficult to find.