Search results
Results from the WOW.Com Content Network
In geometry, a position or position vector, also known as location vector or radius vector, is a Euclidean vector that represents a point P in space. Its length represents the distance in relation to an arbitrary reference origin O , and its direction represents the angular orientation with respect to given reference axes.
Snap, [6] or jounce, [2] is the fourth derivative of the position vector with respect to time, or the rate of change of the jerk with respect to time. [4] Equivalently, it is the second derivative of acceleration or the third derivative of velocity, and is defined by any of the following equivalent expressions: = ȷ = = =.
A free vector is a vector quantity having an undefined support or region of application; it can be freely translated with no consequences; a displacement vector is a prototypical example of free vector. Aside from the notion of units and support, physical vector quantities may also differ from Euclidean vectors in terms of metric.
In physics and geometry, there are two closely related vector spaces, usually three-dimensional but in general of any finite dimension. Position space (also real space or coordinate space) is the set of all position vectors r in Euclidean space, and has dimensions of length; a position vector defines a point in space.
The magnitude of a vector (such as distance) is another example of an invariant, because it remains fixed even if geometrical vector components vary. (For example, for a position vector of length meters, if all Cartesian basis vectors are changed from meters in length to meters in length, the length of the position vector remains unchanged at ...
A vector pointing from A to B. In mathematics, physics, and engineering, a Euclidean vector or simply a vector (sometimes called a geometric vector [1] or spatial vector [2]) is a geometric object that has magnitude (or length) and direction. Euclidean vectors can be added and scaled to form a vector space.
A coordinate system in mathematics is a facet of geometry or of algebra, [9] [10] in particular, a property of manifolds (for example, in physics, configuration spaces or phase spaces). [11] [12] The coordinates of a point r in an n-dimensional space are simply an ordered set of n numbers: [13] [14]
is the position vector (a vector from the point about which the torque is being measured to the point where the force is applied), and r is the magnitude of the position vector, F {\displaystyle \mathbf {F} } is the force vector, F is the magnitude of the force vector and F ⊥ is the amount of force directed perpendicularly to the position of ...