enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Energy–momentum relation - Wikipedia

    en.wikipedia.org/wiki/Energy–momentum_relation

    In physics, the energy–momentum relation, or relativistic dispersion relation, is the relativistic equation relating total energy (which is also called relativistic energy) to invariant mass (which is also called rest mass) and momentum. It is the extension of mass–energy equivalence for bodies or systems with non-zero momentum.

  3. Relativistic mechanics - Wikipedia

    en.wikipedia.org/wiki/Relativistic_mechanics

    The relativistic four-velocity, that is the four-vector representing velocity in relativity, is defined as follows: = = (,) In the above, is the proper time of the path through spacetime, called the world-line, followed by the object velocity the above represents, and

  4. List of relativistic equations - Wikipedia

    en.wikipedia.org/wiki/List_of_relativistic_equations

    To derive the equations of special relativity, one must start with two other The laws of physics are invariant under transformations between inertial frames. In other words, the laws of physics will be the same whether you are testing them in a frame 'at rest', or a frame moving with a constant velocity relative to the 'rest' frame.

  5. Mass in special relativity - Wikipedia

    en.wikipedia.org/wiki/Mass_in_special_relativity

    The equation is often written this way because the difference is the relativistic length of the energy momentum four-vector, a length which is associated with rest mass or invariant mass in systems. Where m > 0 and p = 0, this equation again expresses the mass–energy equivalence E = m.

  6. Theory of relativity - Wikipedia

    en.wikipedia.org/wiki/Theory_of_relativity

    Mass–energy equivalence: E = mc 2, energy and mass are equivalent and transmutable. Relativistic mass, idea used by some researchers. [9] The defining feature of special relativity is the replacement of the Galilean transformations of classical mechanics by the Lorentz transformations. (See Maxwell's equations of electromagnetism.)

  7. Kinetic energy - Wikipedia

    en.wikipedia.org/wiki/Kinetic_energy

    For example, for a speed of 10 km/s (22,000 mph) the correction to the non-relativistic kinetic energy is 0.0417 J/kg (on a non-relativistic kinetic energy of 50 MJ/kg) and for a speed of 100 km/s it is 417 J/kg (on a non-relativistic kinetic energy of 5 GJ/kg). The relativistic relation between kinetic energy and momentum is given by

  8. Special relativity - Wikipedia

    en.wikipedia.org/wiki/Special_relativity

    In physics, the special theory of relativity, or special relativity for short, is a scientific theory of the relationship between space and time.In Albert Einstein's 1905 paper, On the Electrodynamics of Moving Bodies, the theory is presented as being based on just two postulates: [p 1] [1] [2]

  9. Relativistic Lagrangian mechanics - Wikipedia

    en.wikipedia.org/wiki/Relativistic_Lagrangian...

    The relativistic Lagrangian can be derived in relativistic mechanics to be of the form: = (˙) (, ˙,). Although, unlike non-relativistic mechanics, the relativistic Lagrangian is not expressed as difference of kinetic energy with potential energy, the relativistic Hamiltonian corresponds to total energy in a similar manner but without including rest energy.