Search results
Results from the WOW.Com Content Network
Enantiomers may not be isolable if there is an accessible pathway for racemization (interconversion between enantiomorphs to yield a racemic mixture) at a given temperature and timescale. For example, amines with three distinct substituents are chiral, but with few exceptions (e.g. substituted N -chloroaziridines), they rapidly undergo ...
If a reaction gave the enantiomer of a known configuration, as indicated by the opposite sign of optical rotation, it would indicate that the absolute configuration is inverted. In 1951, Johannes Martin Bijvoet for the first time used in X-ray crystallography the effect of anomalous dispersion , which is now referred to as resonant scattering ...
Isomers do not necessarily share similar chemical or physical properties. Two main forms of isomerism are structural (or constitutional) isomerism, in which bonds between the atoms differ; and stereoisomerism (or spatial isomerism), in which the bonds are the same but the relative positions of the atoms differ. Isomeric relationships form a ...
Like the d-isomer, l-glucose usually occurs as one of four cyclic structural isomers—α- and β-l-glucopyranose (the most common, with a six-atom ring), and α- and β-l-glucofuranose (with a five-atom ring). In water solution, these isomers interconvert in matters of hours, with the open-chain form as an intermediate stage.
In 1848, Louis Pasteur became the first scientist to discover chirality and enantiomers while he was working with tartaric acid. During the experiments, he noticed that there were two crystal structures produced but these structures looked to be non-superimposable mirror images of each other; this observation of isomers that were non-superimposable mirror images became known as enantiomers.
There is no strict relationship between the R/S, the D/L, and (+)/(−) designations, although some correlations exist. For example, of the naturally occurring amino acids, all are L, and most are (S). For some molecules the (R)-enantiomer is the dextrorotary (+) enantiomer, and in other cases it is the levorotary (−) enantiomer. The ...
The atropisomer is an iodoaryl compound synthesised starting from (S)-valine and exists as the (M,S) isomer and the (P,S) isomer. The interconversion barrier between the two is 24.3 kcal/mol (101.7 kJ/mol). The (M,S) isomer can be obtained exclusively from this mixture by recrystallisation from hexanes.
There are many more pairs of diastereomers, because each of these configurations is a diastereomer with respect to every other configuration excluding its own enantiomer (for example, R,R,R is a diastereomer of R,R,S; R,S,R; and R,S,S). For n = 4, there are sixteen stereoisomers, or