enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Darcy–Weisbach equation - Wikipedia

    en.wikipedia.org/wiki/Darcy–Weisbach_equation

    hide. In fluid dynamics, the Darcy–Weisbach equation is an empirical equation that relates the head loss, or pressure loss, due to friction along a given length of pipe to the average velocity of the fluid flow for an incompressible fluid. The equation is named after Henry Darcy and Julius Weisbach.

  3. Darcy friction factor formulae - Wikipedia

    en.wikipedia.org/wiki/Darcy_friction_factor_formulae

    Darcy friction factor formulae. In fluid dynamics, the Darcy friction factor formulae are equations that allow the calculation of the Darcy friction factor, a dimensionless quantity used in the Darcy–Weisbach equation, for the description of friction losses in pipe flow as well as open-channel flow. The Darcy friction factor is also known as ...

  4. Moody chart - Wikipedia

    en.wikipedia.org/wiki/Moody_chart

    Moody chart. In engineering, the Moody chart or Moody diagram (also Stanton diagram) is a graph in non-dimensional form that relates the Darcy–Weisbach friction factor fD, Reynolds number Re, and surface roughness for fully developed flow in a circular pipe. It can be used to predict pressure drop or flow rate down such a pipe.

  5. Fanning friction factor - Wikipedia

    en.wikipedia.org/wiki/Fanning_friction_factor

    Fanning friction factor. The Fanning friction factor (named after American engineer John T. Fanning) is a dimensionless number used as a local parameter in continuum mechanics calculations. It is defined as the ratio between the local shear stress and the local flow kinetic energy density: [1][2] where.

  6. Hagen–Poiseuille equation - Wikipedia

    en.wikipedia.org/wiki/Hagen–Poiseuille_equation

    Continuum mechanics. In nonideal fluid dynamics, the Hagen–Poiseuille equation, also known as the Hagen–Poiseuille law, Poiseuille law or Poiseuille equation, is a physical law that gives the pressure drop in an incompressible and Newtonian fluid in laminar flow flowing through a long cylindrical pipe of constant cross section.

  7. Friction loss - Wikipedia

    en.wikipedia.org/wiki/Friction_loss

    Friction loss is then the change in pressure Δp per unit length of pipe L Δ p L . {\displaystyle {\frac {\Delta p}{L}}.} When the pressure is expressed in terms of the equivalent height of a column of that fluid, as is common with water, the friction loss is expressed as S , the "head loss" per length of pipe, a dimensionless quantity also ...

  8. Friction - Wikipedia

    en.wikipedia.org/wiki/Friction

    Friction is the force resisting the relative motion of solid surfaces, fluid layers, and material elements sliding against each other. [2][3] Types of friction include dry, fluid, lubricated, skin, and internal -- an incomplete list. The study of the processes involved is called tribology, and has a history of more than 2000 years.

  9. Fanno flow - Wikipedia

    en.wikipedia.org/wiki/Fanno_flow

    In fluid dynamics, Fanno flow (after Italian engineer Gino Girolamo Fanno) is the adiabatic flow through a constant area duct where the effect of friction is considered. [1] Compressibility effects often come into consideration, although the Fanno flow model certainly also applies to incompressible flow. For this model, the duct area remains ...