Search results
Results from the WOW.Com Content Network
Thus, another way of stating Sperner's theorem is that the width of the inclusion order on a power set is (⌊ / ⌋). A graded partially ordered set is said to have the Sperner property when one of its largest antichains is formed by a set of elements that all have the same rank. In this terminology, Sperner's theorem states that the partially ...
A totally ordered set is a partially ordered set in which any two elements are comparable. The Szpilrajn extension theorem states that every partial order is contained in a total order. Intuitively, the theorem says that any method of comparing elements that leaves some pairs incomparable can be extended in such a way that every pair becomes ...
A partially ordered set (poset for short) is an ordered pair = (,) consisting of a set (called the ground set of ) and a partial order on . When the meaning is clear from context and there is no ambiguity about the partial order, the set X {\displaystyle X} itself is sometimes called a poset.
An antichain in is a subset of in which each pair of different elements is incomparable; that is, there is no order relation between any two different elements in . (However, some authors use the term "antichain" to mean strong antichain , a subset such that there is no element of the poset smaller than two distinct elements of the antichain.)
In a partially ordered set there may be some elements that play a special role. The most basic example is given by the least element of a poset. For example, 1 is the least element of the positive integers and the empty set is the least set under the subset order. Formally, an element m is a least element if: m ≤ a, for all elements a of the ...
For two elements a, b of a partially ordered set P, the interval [a,b] is the subset {x in P | a ≤ x ≤ b} of P. If a ≤ b does not hold the interval will be empty. Interval finite poset. A partially ordered set P is interval finite if every interval of the form {x in P | x ≤ a} is a finite set. [2] Inverse. See converse. Irreflexive.
A semiorder, defined from a utility function as above, is a partially ordered set with the following two properties: [3]. Whenever two disjoint pairs of elements are comparable, for instance as < and <, there must be an additional comparison among these elements, because () would imply < while () would imply <.
Every cofinal subset of a partially ordered set with maximal elements must contain all maximal elements. A subset L {\displaystyle L} of a partially ordered set P {\displaystyle P} is said to be a lower set of P {\displaystyle P} if it is downward closed: if y ∈ L {\displaystyle y\in L} and x ≤ y {\displaystyle x\leq y} then x ∈ L ...