Search results
Results from the WOW.Com Content Network
A CMOS transistor NAND element. V dd denotes positive voltage.. In CMOS logic, if both of the A and B inputs are high, then both the NMOS transistors (bottom half of the diagram) will conduct, neither of the PMOS transistors (top half) will conduct, and a conductive path will be established between the output and Vss (ground), bringing the output low.
Initially, GDSII was designed as a stream format used to control integrated circuit photomask plotting. Despite its limited set of features and low data density, it became the industry conventional stream format for transfer of IC layout data between design tools of different vendors, all of which operated with proprietary data formats.
In digital electronics, a NAND gate (NOT-AND) is a logic gate which produces an output which is false only if all its inputs are true; thus its output is complement to that of an AND gate. A LOW (0) output results only if all the inputs to the gate are HIGH (1); if any input is LOW (0), a HIGH (1) output results.
The naive approach is to write the circuit as a Boolean expression, and use De Morgan's law and the distributive property to convert it to CNF. However, this can result in an exponential increase in equation size. The Tseytin transformation outputs a formula whose size grows linearly relative to the input circuit's.
Schematic of basic two-input DTL NAND gate. R3, R4 and V− shift the positive output voltage of the input DL stage below the ground (to cut off the transistor at low input voltage). Diode–transistor logic ( DTL ) is a class of digital circuits that is the direct ancestor of transistor–transistor logic .
NOR is a functionally complete operation—NOR gates can be combined to generate any other logical function. It shares this property with the NAND gate. By contrast, the OR operator is monotonic as it can only change LOW to HIGH but not vice versa. In most, but not all, circuit implementations, the negation comes for free—including CMOS and ...
An and-inverter graph (AIG) is a directed, acyclic graph that represents a structural implementation of the logical functionality of a circuit or network.An AIG consists of two-input nodes representing logical conjunction, terminal nodes labeled with variable names, and edges optionally containing markers indicating logical negation.
When a single logical connective or Boolean operator is functionally complete by itself, it is called a Sheffer function [9] or sometimes a sole sufficient operator. There are no unary operators with this property. NAND and NOR, which are dual to each other, are the only two binary Sheffer functions.