enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Excess-3 - Wikipedia

    en.wikipedia.org/wiki/Excess-3

    Excess-3 arithmetic uses different algorithms than normal non-biased BCD or binary positional system numbers. After adding two excess-3 digits, the raw sum is excess-6. For instance, after adding 1 (0100 in excess-3) and 2 (0101 in excess-3), the sum looks like 6 (1001 in excess-3) instead of 3 (0110 in excess-3).

  3. Binary-coded decimal - Wikipedia

    en.wikipedia.org/wiki/Binary-coded_decimal

    This scheme can also be referred to as Simple Binary-Coded Decimal (SBCD) or BCD 8421, and is the most common encoding. [12] Others include the so-called "4221" and "7421" encoding – named after the weighting used for the bits – and "Excess-3". [13]

  4. Adder (electronics) - Wikipedia

    en.wikipedia.org/wiki/Adder_(electronics)

    A full adder can be viewed as a 3:2 lossy compressor: it sums three one-bit inputs and returns the result as a single two-bit number; that is, it maps 8 input values to 4 output values. (the term "compressor" instead of "counter" was introduced in [ 13 ] )Thus, for example, a binary input of 101 results in an output of 1 + 0 + 1 = 10 (decimal ...

  5. Offset binary - Wikipedia

    en.wikipedia.org/wiki/Offset_binary

    Offset binary, [1] also referred to as excess-K, [1] excess-N, excess-e, [2] [3] excess code or biased representation, is a method for signed number representation where a signed number n is represented by the bit pattern corresponding to the unsigned number n+K, K being the biasing value or offset.

  6. Karnaugh map - Wikipedia

    en.wikipedia.org/wiki/Karnaugh_map

    A Karnaugh map (KM or K-map) is a diagram that can be used to simplify a Boolean algebra expression. Maurice Karnaugh introduced it in 1953 [ 1 ] [ 2 ] as a refinement of Edward W. Veitch 's 1952 Veitch chart , [ 3 ] [ 4 ] which itself was a rediscovery of Allan Marquand 's 1881 logical diagram [ 5 ] [ 6 ] (aka.

  7. Gray code - Wikipedia

    en.wikipedia.org/wiki/Gray_code

    If a subsection of a specific codevalue is extracted from that value, for example the last 3 bits of a 4-bit gray-code, the resulting code will be an "excess gray code". This code shows the property of counting backwards in those extracted bits if the original value is further increased.

  8. Double dabble - Wikipedia

    en.wikipedia.org/wiki/Double_dabble

    The reverse double dabble algorithm, performed on the three BCD digits 2-4-3, looks like this: BCD Input Binary Output 2 4 3 0010 0100 0011 00000000 Initialization 0001 0010 0001 10000000 Shifted right 0000 1001 0000 11000000 Shifted right 0000 0110 0000 11000000 Subtracted 3 from 2nd group, because it was 9 0000 0011 0000 01100000 Shifted ...

  9. Signed number representations - Wikipedia

    en.wikipedia.org/wiki/Signed_number_representations

    The IEEE 754 floating-point standard defines the exponent field of a single-precision (32-bit) number as an 8-bit excess-127 field. The double-precision (64-bit) exponent field is an 11-bit excess-1023 field; see exponent bias. It also had use for binary-coded decimal numbers as excess-3.